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WEDGE-BASED LIGHT-FIELD VIDEO
CAPTURE

CROSS-REFERENCE TO RELATED
APPLICATIONS

The present application claims the benefit of U.S. Provi-
sional Application Ser. No. 62/333,637 for “Image Capture
for Virtual Reality Displays,”, filed May 9, 2016, the dis-
closure of which is incorporated herein by reference in its
entirety.

The present application also claims the benefit of U.S.
Provisional Application Ser. No. 62/359,022 for “Combin-
ing Light-Field Data with Active Depth Data for Depth Map
Generation,”, filed Jul. 6, 2016, the disclosure of which is
incorporated herein by reference in its entirety.

The present application also claims priority as a continu-
ation-in-part of U.S. Utility application Ser. No. 15/582,237
for “Image Capture for Virtual Reality Displays,”, filed Apr.
28, 2017, the disclosure of which is incorporated herein by
reference in its entirety.

U.S. Utility application Ser. No. 15/582,237 claims the
benefit of U.S. Provisional Application Ser. No. 62/333,637
for “Image Capture for Virtual Reality Displays™, filed May
9, 2016, the disclosure of which is incorporated herein by
reference in its entirety.

U.S. Utility application Ser. No. 15/582,237 also claims
priority as a continuation-in-part of U.S. patent application
Ser. No. 15/084,326 for “Capturing Light-Field Volume
Images and Video Data Using Tiled Light-Field Cameras”,
filed Mar. 29, 2016, the disclosure of which is incorporate
herein by reference in its entirety.

U.S. patent application Ser. No. 15/084,326 claims the
benefit of U.S. Provisional Application Ser. No. 62/148,055
for “Light Guided Image Plane Tiled Arrays with Dense
Fiber Optic Bundles for Light-Field and High Resolution
Image Acquisition”, filed Apr. 15, 2015, the disclosure of
which is incorporated herein by reference in its entirety.

U.S. patent application Ser. No. 15/084,326 also claims
the benefit of U.S. Provisional Application Ser. No. 62/148,
460 for “Capturing Light-Field Volume Image and Video
Data Using Tiled Light-Field Cameras”, filed Apr. 16, 2015,
the disclosure of which is incorporated herein by reference
in its entirety.

The present application is related to U.S. application Ser.
No. 15/590,808 for “Adaptive Control for Immersive Expe-
rience Delivery,”, filed on the same date as the present
application, the disclosure of which is incorporated herein
by reference in its entirety.

The present application is also related to U.S. application
Ser. No. 15/590,841 for “Vantage Generation and Interactive
Playback,”, filed on the same date as the present application,
the disclosure of which is incorporated herein by reference
in its entirety.

The present application is also related to U.S. application
Ser. No. 15/590,877 for “Spatial Random Access Enabled
Video System with a Three-Dimensional Viewing Volume,”,
filed on the same date as the present application, the dis-
closure of which is incorporated herein by reference in its
entirety.

TECHNICAL FIELD

The present document relates to the use of a camera
system such as a camera array to capture video in segments
for applications such as virtual reality and augmented reality.

10

15

20

25

30

35

40

45

50

55

60

65

2
BACKGROUND

As better and more immersive display devices are created
for providing virtual reality (VR) and augmented reality
(AR) environments, it is desirable to be able to capture high
quality imagery and video for these systems. In a stereo VR
environment, a user sees separate views for each eye; also,
the user may turn and move his or her head while viewing.
As a result, it is desirable that the user receive high-
resolution stereo imagery that is consistent and correct for
any viewing position and orientation in the volume within
which a user may move his or her head.

The most immersive virtual reality and augmented reality
experiences have six degrees of freedom and view-depen-
dent lighting. Accordingly, it is desirable to capture video of
a scene with a full 360° view of the scene. Unfortunately,
with known filming techniques, it is difficult to capture 360°
video because it is difficult to hide the lighting, stage
equipment, director, and other equipment and/or personnel
needed to capture video.

SUMMARY

Various embodiments of the described system and method
capture 360° video in sectors or “wedges,” by rotating a
camera system and capturing each wedge in sequence. In
some embodiments, five wedges may be used to obtain full
90°/360° video or even 180°/360° video with a camera
system having a 90° field-of-view. The camera system may
be rotated to a new orientation to capture video for each
wedge. In some embodiments, the camera system may be a
camera array having a plurality of cameras arranged in a
regular arrangement. For example, a hexagonal array may be
used. Each of the cameras may be a light-field camera or a
conventional camera. Video from an array of conventional
cameras may be combined to generate light-field data.

The wedges may overlap slightly to facilitate the process
of stitching the videos for each wedge together into a
combined video. The video may be combined in such a
manner that the resulting combined video is substantially
without duplicative inclusion of the overlapping video por-
tion(s). Depth information for the scene may also be cap-
tured to facilitate this process and/or to facilitate the process
of adding one or more computer-generated elements to the
wedge videos and/or the combined video.

It may be desirable to designate a safe action zone within
one or more of the wedges, within which motion will only
be viewable by the camera system in one of the orientations.
Thus, the motion will only be present within the video
captured by the camera in one orientation, and need not be
synchronized between video data captured by adjacent
wedges. The safe action zone may be designated in some
manner for the benefit of actors and other personnel. Accord-
ing to one embodiment, the camera system may project a
laser to indicate one or both boundaries of the safe action
zone.

In order to facilitate proper combination of the wedge
videos, the camera system may be calibrated. This process
may include positioning a calibration chart within the safe
action zone of each of the wedges, and within the overlap-
ping space between each pair of neighboring safe action
zones. Video depicting the calibration chart may be captured
in sequence and used to generate a virtual camera system in
which each virtual camera has characteristics, such as posi-
tion and orientation, matching those of their counterparts
during calibration. The virtual camera system may be used
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to facilitate the process of accurately combining the wedge
videos into the combined video.

BRIEF DESCRIPTION OF THE DRAWINGS

The accompanying drawings illustrate several embodi-
ments. Together with the description, they serve to explain
the principles of the embodiments. One skilled in the art will
recognize that the particular embodiments illustrated in the
drawings are merely exemplary, and are not intended to limit
scope.

FIG. 1 is a flow diagram depicting a method for capturing
a scene in wedge-shaped segments, according to one
embodiment.

FIG. 2 depicts a camera system, according to one embodi-
ment.

FIG. 3 is a diagram depicting the use of a camera system
of FIG. 2 to capture a 360° view of a scene in five
wedge-shaped portions, according to one embodiment.

FIG. 4 is a diagram depicting the layout of a scene,
according to one embodiment.

FIGS. 5A through 5E are a series of screenshot diagrams
depicting views captured by a camera system that rotates
within the scene of FIG. 4, according to one embodiment.

FIGS. 6A and 6B are screenshot diagrams depicting a
frame from a combined video and a frame from a combined
depth map, respectively, of the scene of FIG. 4, according to
one embodiment.

FIGS. 7A through 12D depict various stages of a calibra-
tion process, according to one embodiment.

FIG. 13 depicts a color chart, according to one embodi-
ment.

FIG. 14 depicts the two sides of a gray card, according to
one embodiment.

FIG. 15 depicts capture of a wedge-shaped portion of a
scene, according to one embodiment.

DETAILED DESCRIPTION

Multiple methods for capturing image and/or video data
in a light-field volume and creating virtual views from such
data are described. The described embodiments may provide
for capturing continuous or nearly continuous light-field
data from many or all directions facing away from the
capture system, which may enable the generation of virtual
views that are more accurate and/or allow viewers greater
viewing freedom.

Definitions

For purposes of the description provided herein, the

following definitions are used:

Augmented reality: an immersive viewing experience in
which images presented to the viewer are based on the
location and/or orientation of the viewer’s head and/or
eyes, and are presented in conjunction with the view-
er’s view of actual objects in the viewer’s environment.

Combined video: a video in which videos and/or images
captured separately from each other are combined
together and presented as a single video.

Conventional image: an image in which the pixel values
are not, collectively or individually, indicative of the
angle of incidence at which light is received on the
surface of the sensor.

Depth: a representation of distance between an object
and/or corresponding image sample and the entrance
pupil of the optics of the capture system.
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Input device: any device that receives input from a user.

Light-field camera: any camera capable of capturing
light-field images.

Light-field data: data indicative of the angle of incidence
at which light is received on the surface of the sensor.

Light-field image: an image that contains a representation
of light-field data captured at the sensor, which may be
a four-dimensional sample representing information
carried by ray bundles received by a single light-field
camera.

Light-field volume: the combination of all light-field
images that represents, either fully or sparsely, light
rays entering the physical space defined by the light-
field volume.

Portion of a scene: a subset of a scene.

Processor: any processing device capable of processing
digital data, which may be a microprocessor, ASIC,
FPGA, or other type of processing device.

Ray bundle, “ray,” or “bundle”: a set of light rays
recorded in aggregate by a single pixel in a photosen-
SOr.

Scene: an arrangement of objects and/or people to be
filmed

Sensor, “photosensor,” or “image sensor”: a light detector
in a camera capable of generating images based on light
received by the sensor.

Stereo virtual reality: an extended form of virtual reality
in which each eye is shown a different view of the
virtual world, enabling sterecoscopic three-dimensional
perception.

Tiled array: an arrangement of light-field cameras in
which the light-field cameras are compactly and/or
loosely, evenly and/or unevenly distributed about an
axis and oriented generally outward to capture an
environment surrounding the tiled array, with exem-
plary tiled arrays including ring-shaped arrays, spheri-
cal arrays, cubic arrays, and the like.

Virtual reality: an immersive viewing experience in which
images presented to the viewer are based on the loca-
tion and/or orientation of the viewer’s head and/or
eyes.

Virtual view: a reconstructed view, typically for display in
a virtual reality or augmented reality headset, which
may be generated by resampling and/or interpolating
data from a captured light-field volume.

Virtual viewpoint: the location, within a coordinate sys-
tem and/or light-field volume, from which a virtual
view is generated.

Wedge-shaped portion: a portion that has a generally
triangular or sectoral (slice of pie) shape.

In addition, for ease of nomenclature, the term “camera”
is used herein to refer to an image capture device or other
data acquisition device. Such a data acquisition device can
be any device or system for acquiring, recording, measuring,
estimating, determining and/or computing data representa-
tive of a scene, including but not limited to two-dimensional
image data, three-dimensional image data, and/or light-field
data. Such a data acquisition device may include optics,
sensors, and image processing electronics for acquiring data
representative of a scene, using techniques that are well
known in the art. One skilled in the art will recognize that
many types of data acquisition devices can be used in
connection with the present disclosure, and that the disclo-
sure is not limited to cameras. Thus, the use of the term
“camera” herein is intended to be illustrative and exemplary,
but should not be considered to limit the scope of the
disclosure. Specifically, any use of such term herein should
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be considered to refer to any suitable device for acquiring
image data. Further, in this disclosure, the phrase “camera
system” refers to any system including one or more con-
ventional and/or light-field cameras and/or any related hard-
ware, such as motors, mounts, input devices, and/or the like.
Thus, a tiled array of light-field or conventional cameras is
one of many types of camera systems.

In the following description, several systems and methods
for capturing video are described. One skilled in the art will
recognize that these various systems and methods can be
performed singly and/or in any suitable combination with
one another. Further, many of the configurations and tech-
niques described herein are applicable to conventional imag-
ing as well as light-field imaging. Further, although the
ensuing description focuses on video capture for use in
virtual reality or augmented reality, the systems and methods
described herein may be used in a much wider variety of
video applications.

Wedge-Based Video Capture

As described previously, the equipment and personnel
that need to be present on the set can present a challenge for
360° immersive video, which should ideally be presented
without the presence of such equipment or personnel in
order to help the viewer remain immersed in the experience.
Accordingly, in some embodiments, panoramic video may
be captured in segments, which may subsequently be
stitched together to generate the combined video. The com-
bined video may provide 360° immersion with the ability to
generate viewpoint video for any viewpoint within a view-
ing volume, at which the viewer positions his or her head.

Referring to FIG. 1, a flow diagram depicts a method 100
for capturing a scene in wedge-shaped segments, according
to one embodiment. As shown, the method 100 may start 110
with a step 120 in which the camera system is calibrated.
This may entail ensuring that the camera system is accu-
rately positioned and/or oriented relative to the action to be
captured.

In a step 130, safe action zones may be designated. Each
safe action zone may indicate a zone within which motion
will not interfere with capture of video in an adjoining
segment, as will be described subsequently.

In a step 140, the camera system may be oriented toward
a portion (for example, a first portion) of the scene to be
captured. Optionally, the camera system may again be
calibrated, for example, by repeating the step 120. In some
embodiments, only a partial calibration may be needed after
reorientation of the camera system. Thus, some, but not
necessarily all of the calibration procedures performed pur-
suant to the step 120 may be carried out.

Then, in a step 150, video may be captured with the
camera system in the orientation provided in the step 140. In
a step 160, a depth map may be generated for the same
portion of the scene (for example, the first portion).

Pursuant to a query 170, a determination may be made as
to whether the scene has been fully captured. If not, the
method 100 may return to the step 140, in which the camera
system is oriented toward another portion (for example, a
second or subsequent portion) of the scene to be captured.
Then, the step 150 and the step 160 may be performed for
the portion of the scene at which the camera system is
oriented.

Thus, the step 140, the step 150, and the step 160 may be
repeated until video and/or a depth map has been captured
for all portions of the scene. Then, the query 170 will be
answered in the affirmative, and the method 100 may
proceed to a step 180 in which the videos captured in each
iteration of the step 150 are combined together to generate
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a combined video depicting the entire scene. The depth map
generated in each iteration of the step 160 may optionally be
used in the course of performing the step 180. The method
100 may then end 190.

The steps of the method 100 may be reordered, omitted,
replaced with alternative steps, and/or supplemented with
additional steps not specifically described herein. The steps
set forth above will be shown and described in greater detail
subsequently.

The method 100 may be carried out through the use of any
of a wide variety of camera systems. According to some
embodiments, a camera system in the form of a camera array
may be used. Various types of camera arrays may be used,
including but not limited to tiled camera arrays, hemispheri-
cal arrays, semispherical arrays defining less than a hemi-
sphere, planar arrays, and/or the like. This disclosure focuses
on the use of planar arrays; however, those of skill in the art
will recognize that the methods set forth herein may readily
be extended to other camera array types. One exemplary
planar camera array will be shown and described in con-
nection with FIG. 2.

Planar Camera Arrays

Referring to FIG. 2, a camera system 200 is shown,
according to one embodiment. The camera system 200 may
contain a set of cameras 210, which may be arranged to
define a planar array having a generally hexagonal shape.
Each of the cameras 210 may be a plenoptic light-field
camera as described above, or a conventional camera of any
type known in the art. The data captured by the cameras 210
may be combined to define a light-field even if the cameras
210 are conventional cameras. The cameras 210 may include
a central camera 220, which may be positioned at the center
of the planar array. According to some examples, each of the
cameras 210 may have a field-of-view encompassing an
angle of 90°, both vertically and horizontally. The camera
system 200 may optionally have a synchronization trigger
(not shown) that can be used to automatically activate the
camera system 200, audio recording equipment, and/or
audio playback equipment to facilitate synchronization of
the video captured by the camera system 200 with audio
and/or video captured by the camera system 200 at different
orientations.

The cameras 210 may be secured to a plate 230, which
may be rotatably coupled to a frame 240. The plate 230 may
be selectively angled relative to the frame 240 to permit the
cameras 210 to be oriented horizontally as shown, or tilted
upward or downward. The frame 240 may be rotatably
coupled to a base 250. A motor (not shown) may optionally
be coupled to the frame 240 to rotate the frame 240 relative
to the base 250. The rotation may be about an axis 260 that
passes through a nodal point of the central camera 220.

The camera system 200 may be readily usable with the
method 100 of FIG. 1. The ability to rotate the frame 240 on
the base 250 may enable the camera to be easily oriented
each time the step 140 is performed. Further, the cameras
210 may be used to capture volumetric video, permitting the
view to be generated from any viewpoint within a viewing
volume, as determined by the position and/or orientation of
the viewer’s head. Thus, the camera system 200 may be used
to facilitate video capture for virtual reality, augmented
reality, and/or other interactive applications.

The following description references the camera system
200 of FIG. 2. However, it is to be understood that reference
to the camera system 200 is merely exemplary; the methods
and techniques set forth herein could alternatively be carried
out with any of a wide variety of camera systems.
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Five-Wedge Video Capture

According to certain examples, a camera system such as
the camera system 200 of FIG. 2 may be used to capture a
scene via sequential capture of five wedge-shaped portions
of the scene. The five videos captured may be combined in
the step 180 to generate a combined video depicting a 360°
view of the scene. Capture of five wedge-shaped portions is
merely exemplary; those of skill in the art will recognize that
a camera system may be used to capture a scene divided into
a different number of portions, which may not necessarily be
wedge-shaped. A camera system used to capture a different
number of wedges (for example, two, three, four, six, seven,
or eight wedges) may have a different field-of-view, or may
have the same field-of-view as the camera system 200 of
FIG. 2. Capture of five wedge-shaped portions will be
further shown and described in connection with FIG. 3.

Referring to FIG. 3, a diagram 300 depicts the use of a
camera system 200 as set forth in the description of FIG. 2
to capture a 360° view of a scene 310 in five wedge-shaped
portions 320, according to one embodiment. As shown, each
of the wedge-shaped portions 320 may have a field-of-view
330, which may include the fields-of-view of all of the
cameras 210 of the camera system 200. The cameras 210 at
the left and right points of the hexagonal shape of the planar
array of cameras 210 may define the horizontal extents of the
field-of-view 330 for each of the wedge-shaped portions
320.

Further, each of the wedge-shaped portions 320 may have
a safe action zone 340 that is a subset of the field-of-view
330 for that wedge-shaped portion 320. The safe action zone
340 for a wedge-shaped portion 320 may be the portion of
the field-of-view 330 for that wedge-shaped portion 320 that
is not included in the field-of-view 330 of any other wedge-
shaped portion 320. Outside of the safe action zones 340,
each field-of-view 330 may include two overlapping por-
tions 350, each of which overlaps with the field-of-view 330
of'the adjacent wedge-shaped portion 320. Safe action zones
will be described in greater detail subsequently.

As shown, the camera system 200 may be rotated sequen-
tially so that it captures video each wedge-shaped portion
320 in sequence. Thus, the camera system 200 may first be
oriented to capture the field-of-view 330 labeled “Capture 17
Then, the camera system 200 may be rotated such that the
camera system 200 is oriented to capture the field-of-view
330 labeled “Capture 2,” and then rotated in like manner to
capture the fields-of-view 330 labeled “Capture 3,” “Capture
4,” and “Capture 5.” This will be further shown and
described in connection with an example in FIGS. 4 through
6B.

EXAMPLE

Referring to FIG. 4, a diagram 400 depicts the layout of
a scene 410 according to one embodiment. The scene 410
may be a moon landing scene to be filmed in 360°, for
example, for a virtual reality experience in which the viewer
is able to simulate his or her presence on the filming set. The
camera system 200 (not shown) may be positioned proxi-
mate the center of the scene 410. The scene 410 may include
five wedge-shaped portions like those of the diagram 300 of
FIG. 3. Thus, the scene 410 may be divided into a first
portion 420, a second portion 430, a third portion 440, a
fourth portion 450, and fifth portion 460. The first portion
420 may have a first safe action zone 425, the second portion
430 may have a second safe action zone 435, the third
portion 440 may have a third safe action zone 445, the fourth
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portion 450 may have a fourth safe action zone 455, and the
fifth portion 460 may have a fifth safe action zone 465.

As shown in FIG. 4, the first portion 420 may depict an
astronaut, the second portion 430 may depict a portion of the
stage, the third portion 440 may depict the crew filming the
scene with the astronaut, the fourth portion 450 may depict
lights illuminating the astronaut and moon seen of the first
portion 420, and the fifth portion 460 may depict another
portion of the stage. The first portion 420 and the third
portion 440 may be captured in video, as there is motion
occurring in these scenes. In the second portion 430, the
fourth portion 450, and the fifth portion 460, objects may be
static; accordingly, these portions may each optionally be
captured with a single image rather than with video. The
single image may be combined with each frame of the video
captured for the first portion 420 and the third portion 440
to generate the combined video.

Referring to FIGS. 5A through 5E, a series of screenshot
diagrams depict views captured by a camera system 200 that
rotates within the scene 410 of FIG. 4, according to one
embodiment. The screenshot diagrams may include a first
screenshot diagram 520, a second screenshot diagram 530,
a third screenshot diagram 540, a fourth screenshot diagram
550, and a fifth screenshot diagram 560 depict images that
may be captured by the camera system 200 when oriented
toward the first portion 420, the second portion 430, the third
portion 440, the fourth portion 450, and the fifth portion 460,
respectively. These screenshot diagrams are shown prior to
post-production.

As mentioned previously, the video and/or images cap-
tured by the camera system 200 when oriented toward each
of the portions of the scene 410 may be combined to
generate a combined video. Depth information indicative of
the distance of objects from the camera system 200 may
optionally be captured and used to facilitate this process
and/or the process of adding computer-generated elements
to the combined video. Generation of the combined video
will be described in greater detail subsequently.

Referring to FIGS. 6A and 6B, a screenshot diagram 600
and a screenshot diagram 650 depict a frame from a com-
bined video and a frame from a combined depth map,
respectively, of the scene 410 of FIG. 4, according to one
embodiment. The images and/or videos captured by the
camera system 200 in each orientation may be combined
together relatively seamlessly in post-production to generate
the combined video that constitutes video of the scene 410
in 360°, as depicted in the screenshot diagram 600. The
screenshot diagram 600 does not show significant duplica-
tive inclusion of any of the overlapping portions 350 (as
depicted in FIG. 3) between camera system orientations. The
screenshot diagram 600 may appear to a viewer to be a
substantially seamless 360° view of the scene.

As shown, some computer-generated elements may be
added to the combined video, such as the moon lander. In the
screenshot diagram 600, various real-world elements, such
as the camera crew and lighting components, have been left
in place to depict the filming process. However, for a more
immersive experience, these elements may be replaced with
other images and/or video, or with other computer-generated
elements.

Some objects that do not have clear, distinct edges in
video may have clearer edges in a depth map, such as may
be obtained through the use of LiDAR, light-field image
processing, active illumination techniques using visible or
invisible light, and/or other known techniques, as in the step
160. Use of LiDAR is shown and described in U.S. Provi-
sional Application Ser. No. 62/359,022 for “Combining
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Light-Field Data with Active Depth Data for Depth Map
Generation,”, filed Jul. 6, 2016, the disclosure of which is
incorporated herein by reference in its entirety. Thus, use of
a depth map, such as that depicted in the screenshot diagram
650, may facilitate proper alignment, with each other, of the
images and/or videos captured by the camera system 200 in
its various orientations. Further, such a depth map may be
used to position a computer-generated object at the proper
depth within the scene. For example, the moon lander may
be positioned in front of the sky, but behind the astronaut so
that the moon lander is properly occluded by the astronaut,
but not the sky.

Camera System Calibration

Having the camera system 200 precisely calibrated may
facilitate the process of combining the videos for the various
portions of a scene by making the overlapping portions 350
of the various portions line up more precisely with each
other when superimposed during post-production. Various
processes may be used to undertake such calibration in the
step 120. One embodiment will be shown and described
herein, with reference to FIGS. 7A through 12D.

According to one embodiment, accurate spin may be
accomplished by having the center of rotation of the camera
system 200 aligned mechanically to the nodal point of the
central camera 220, as discussed in connection with FIG. 2.
Degrees of rotation may be referenced through the use of a
protractor mounted at a fixed location, such as on the floor
around the camera system 200. The protractor may have any
suitable degree of accuracy, such as for example an accuracy
of 0.1°. Final adjustment of the orientation of the camera
system 200 may be accomplished through the use of a fine
degree gear (not shown). The camera system 200 may be
locked in a given orientation through the use of a friction
lock (not shown).

Once the camera system 200 has been set up in this
manner and oriented at a desired orientation (such as the
orientation needed to capture images and/or video from one
of the wedge-shaped portions of the scene 410), a reference
laser mounted on the camera system 200 may be activated.
The point illuminated by the laser may then be marked and
as used a reference mark to return to on subsequent rotations
so that the camera system 200 may be returned to the same
orientation with a high degree of precision.

Once the camera system 200 has been positioned and set
up above, calibration may be carried out. Through the use of
an exemplary calibration process, one or more calibration
charts may be strategically positioned throughout a 360°
field-of-view to be captured. The calibration charts may be
captured and the resulting images and/or video may be used
to mathematically infer the precise rotational and transla-
tional functions for the five wedge-shaped portions of the
scene.

Specifically, the calibration chart may have a checker-
board configuration, a circle grid, or the like. The calibration
chart may be placed on a flat surface and positioned at an
optimal distance from the camera system 200, such as 1.5 to
2.5 meters away from the camera system 200. The calibra-
tion process may include, for example, two different types of
calibration; “plate-bundle” and “spin-bundle”. In plate-
bundle, for each of the wedge-shaped portions of the scene,
a collection of still-images (for example, 10) of the calibra-
tion chart may be captured with the camera system 200.
Each of the ten shots may capture the calibration chart at a
different position, orientation and/or distance from camera
in the field-of-view of the camera system 200. In spin-
bundle, one or more charts may be placed in a location
visible to the capture system both in the current configura-
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tion, and also the configuration for the subsequent wedge.
Still images of the chart(s) are then captured by the camera
system in both configurations. The task of creating and/or
updating a joint set of camera models based on captured
image data may be performed using an approach called
“bundle adjustment”. (for example, see https://en.wikipedi-
a.org/wiki/Bundle_adjustment)

In some embodiments, the calibration data obtained
through the use of the calibration process may be used to
generate a virtual camera system with virtual cameras that
generally match the cameras 210 of the camera system 200
in terms of layout and operation. In the calibration process,
the positions, orientations, fields-of-view, and/or other data
for each of the cameras of the virtual camera system may be
established. This process may involve capturing images of
the calibration chart in the overlapping portions outside the
safe action zones of the wedge-shaped portions of the scene.

Referring to FIGS. 7A through 12D, various stages of a
calibration process are depicted, according to one embodi-
ment. These drawings are based on the exemplary scene 410
of FIG. 4. The calibration process may proceed as follows:

1) First wedge-shaped portion (FIGS. 7A through 7D):

a) Capture 10 plate-bundle shots;

b) Place the calibration chart in the overlapping portion
at which the fields-of-view of the first and second
wedge-shaped portions overlap with each other so
that it can be seen by the camera system when
oriented toward either of the first and second wedge-
shaped portions (this is the spin-bundle position);

¢) Capture the chart; and

d) With the chart position fixed, rotate the camera
system toward the second wedge-shaped portion.

2) Second wedge-shaped portion (FIGS. 8A through 9B):

a) Capture the chart from the spin-bundle position;

b) Capture 10 plate-bundle shots;

¢) Place the calibration chart in the spin-bundle position
at which the second and third wedge-shaped portions
overlap with each other;

d) Capture the chart; and

e) With the chart position fixed, rotate the camera
system toward the third wedge-shaped portion.

3) Third wedge-shaped portion (FIGS. 9C through 10C):

a) Capture the chart from the spin-bundle position;

b) Capture 10 plate-bundle shots;

¢) Place the calibration chart in the spin-bundle position
at which the third and fourth wedge-shaped portions
overlap with each other;

d) Capture the chart; and

e) With the chart position fixed, rotate the camera
system toward the fourth wedge-shaped portion.

4) Fourth wedge-shaped portion (FIGS. 10D through

12A):

a) Capture the chart from the spin-bundle position;

b) Capture 10 plate-bundle shots;

¢) Place the calibration chart in the spin-bundle position
at which the fourth and fifth wedge-shaped portions
overlap with each other;

d) Capture the chart; and

e) With the chart position fixed, rotate the camera
system toward the fifth wedge-shaped portion.

5) Fifth wedge-shaped portion (FIGS. 12B through 12D):

a) Capture the chart from the spin-bundle position;

b) Capture 10 plate-bundle shots;

¢) Place the calibration chart in the spin-bundle position
at which the fourth and fifth wedge-shaped portions
overlap with each other;

d) Capture the chart; and
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e) With the chart position fixed, rotate the camera
system toward the first wedge-shaped portion.

6) First wedge-shaped portion: capture the chart from the

spin-bundle position.

Using the checkerboard shots obtained in the six steps set
forth above, the positions of the virtual cameras of the
virtual camera system in each of the five orientations (i.e.,
oriented toward each of the five wedge-shaped portions of
the scene) may be estimated simultaneously. Specifically, for
a calibrated camera system with known focal distance,
principal points, and undistortion parameters, the position of
each virtual camera may be estimated relative to a check-
erboard with a known geometric pattern. (for example, see
OpenCV documentation for camera calibration, https://doc-
s.opencv.org/2.4/doc/tutorials/calib3d/camera_calibration/
camera_ca libration.html).

Accordingly, if a set of cameras can view the same
checkerboard placed at the same location, the relative posi-
tions of the cameras in the set may be estimated. Each
plate-bundle shot may be used to determine relative camera
positions within one of the wedge-shaped portions. Each
spin-bundle shot may be used to determine relative (virtual)
camera positions in adjacent wedge-shaped portions.

The position of a checkerboard relative to the same
checkerboard placed at a different location may also be
estimated in a similar manner. For example, a calibrated
camera positioned to view the checkerboard placed at both
the locations may be used.

Using the data obtained in these steps, initial estimates of
the positions of the 5*N camera positions may be obtained.
Checkerboard positions may be placed at the second and
subsequent locations relative to the checkerboard position
placed at the first location. After the initial estimates have
been obtained, bundle adjustment may be performed to
fine-tune the estimated camera positions by minimizing the
reprojection error between the projected three-dimensional
positions of each checkerboard feature and the correspond-
ing pixel location in the images capturing the feature.
Color Calibration

Color calibration may also be performed, in addition to
calibration to ascertain the parameters of the virtual cameras
of the virtual camera system. Color calibration may be
included in the step 120. The color calibration procedure
may ensure that colors are captured consistently and accu-
rately. In some embodiments, color calibration may be
carried out through the use of a color plate such as a color
chart. In alternative embodiments, a clean plate, rather than
a color plate, may be used.

Referring to FIG. 13, a color chart 1300 is depicted,
according to one embodiment. The color chart 1300 may
have a series of different colors, as shown. To select color
samples for color calibration, a specific color chart, such as
the color chart 1300 of FIG. 13, may be designed for
automatic processing. In some embodiments, a classic Mac-
beth color chart may be used as the color source. It may be
placed on a flat board with four black and white markers
1310 on its four corners. The black and white markers 1310
may facilitate computer recognition of the color chart 1300
in images captured during the color calibration process.
Additionally or alternatively, a gray card may be used to
carry out color calibration, as will be shown and described
in connection with FIG. 14.

Referring to FIG. 14, a diagram 1400 depicts the two sides
of a gray card 1410, according to one embodiment. A color
chart such as the color chart 1300 may be placed about one
meter away from the camera system 200 and keep parallel
to the plate 230 of the camera system 200. A reference

20

25

40

45

55

12

camera of the cameras 210, such as the central camera 220,
may face toward the center of the color chart 1300. Then, ten
frames may be captured. The color chart 1300 may be left in
position, and the gray card 1410 may be positioned to cover
the color chart 1300 so that no color patches can be seen.
Another ten frames may be captured to complete the image
captures needed for color calibration. The various images
captured may then be compared with each other and used to
change settings of the camera system 200 and/or post-
processing system as needed to complete the color calibra-
tion process.

Safe Action Zones

As mentioned previously, the field-of-view of each
wedge-shaped portion of a scene may have a safe action
zone that is only captured by the camera system 200 in one
orientation. It may be desirable to have motion occur solely
within the safe action zone, rather than in the overlapping
portions on either side of the safe action zone, because that
motion need not be replicated during capture of the adjacent
wedge-shaped portions. This will be further shown and
described in connection with FIG. 15.

Referring to FIG. 15, a diagram 1500 depicts capture of
a wedge-shaped portion of a scene, according to one
embodiment. As shown, the camera system 200 may have a
field-of-view 1530 bounded by the edges of the fields-of-
view of the cameras 210 positioned at the left and right tips
of the hexagonal array. A safe action zone 1540 may reside
within the field-of-view 1530, and may have wedge shape
bounded by the fields-of-view of the camera system 200
when oriented toward the two adjacent wedge-shaped por-
tions.

By way of example, the diagram 1500 depicts two periph-
eral objects 1570, each of which is positioned partially
outside the safe action zone 1540. The diagram 1500 also
depicts a central object 1580 that is positioned entirely
within the safe action zone 1540. The central object 1580
will be exclusively by the camera system 200 in the current
orientation, i.e., oriented toward the wedge-shaped portion
of the scene in which the safe action zone 1540 resides.
However, the peripheral objects 1570 are each positioned
partially within the field-of-view of the camera system 200
when oriented toward the adjacent wedge-shaped portions;
thus, errors will be introduced when the videos are combined
together to generate the combined video depicting a 360°
view of the scene.

In order to help keep action within the safe action zone
1540, it may be beneficial to designate and/or demarcate the
safe action zone 1540 for the benefit of actors, directors,
and/or other personnel, as in the step 130. This may be done,
in some embodiments, through the use of lasers mounted to
the camera system 200. The lasers may be mounted on the
plate 230 and/or on the frame 240 so that the lasers rotate
with the plate 230 to each orientation in which video is to be
captured by the camera system 200. The lasers may project
beams 1550 that indicate the horizontal edges of the safe
action zone 1540.

Because scenes are often large, brightness for marking
safe action zones may advantageously be at a level such that
it is visible to the action on the filming set throughout the
entire scene. The application of a tangential laser to the
scene blocking mark, as one might see with a home laser
level, may be effective for smaller scenes. However, in large
areas, a more powerful light source may be needed to
account for the fact that the power of the laser falls off
exponentially with increasing distance from the source.
Increasing the power of the laser runs the risk of creating an
eye hazard and/or running afoul of regulations promulgated
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by OSHA and other regulatory bodies. Accordingly, in some
embodiments, a mirror galvanometer may be used in con-
junction with an eye safe laser. The mirror may be precisely
positioned so as to provide a bright, visible dot that travels
at high frequency along a predetermined pattern that indi-
cates the boundary of the safe action zone. Such an approach
may keep continuous brightness for visibility along a large
area without resorting to the use of unsafe laser conditions
on-set.

Safe action zone lasers may present a fast, accurate
method for ensuring that action is restricted to a safe action
zone within each of the wedge-shaped portions of a scene.
As described above, the action within these safe action zones
may be captured in a single orientation of the camera system
200, without any overlap with the fields-of-view of adjacent
orientations of the camera system 200. Such safe action zone
lasers may be pre-set for various fields of view, various
degrees of rotation, and/or various aperture widths. Further,
such safe action zone lasers may be used to indicate both
horizontal and vertical safe action zones. Marking these
zones using eye-safe laser methods may provide real-time
set blocking for both talent and creatives that eliminates the
need for significant reshoots and post-processing.

In the event that an actor or object leaves the safe action
zone during video capture, the motion may optionally be
removed in post-production. For example, parts of the video
or image may be invalidated from the video or image from
the adjoining wedge-shaped portion that did not see the
action so that, during vantage generation, only select pixels
from the valid edge would be visible.

Video Capture Process

Once the camera system 200 has been positioned and
calibrated and safe action zones have been designated, video
capture may be carried out, as in the step 150. In alternative
embodiments, calibration may be carried out after video
capture; designation of safe action zones is optional.

The capture process may consist of a timed capture per
wedge-shaped portion for all five wedge-shaped portions of
the scene. First, a single wedge-shaped portion of the scene
may be set up, and all action may be staged within the safe
action zone for that wedge-shaped portion. Single camera
views may be used to check exposure and light flares; once
these have been verified, that wedge-shaped portion of the
scene may be captured and timed. The next step may be to
clear actors and all moving objects from that wedge-shaped
portion of the scene and capture a “clean plate,” which may
be a few seconds of video with no action.

The camera system 200 may then be rotated such that it
is oriented toward the next wedge-shaped portion of the
scene. The steps carried out above for the first wedge-shaped
portion may be repeated for all remaining wedge-shaped
portions. When all action and clean plates have been cap-
tured across all wedge-shaped portions of the scene, a final
calibration capture may be carried out. This may include
capture of a spin bundle and/or color calibration charts.

With this method of capture, the lighting and exposure
may advantageously be kept consistent from one wedge-
shaped portion to the next in order to obtain seamless
alignment between wedge-shaped portions. Similarly, if
there is a lighting transition, it may advantageously be
carefully timed, with down-to-the-frame accuracy, in order
to maintain consistency between wedge-shaped portions.
Accordingly, a lighting transition applied during the capture
of one wedge-shaped portion may advantageously be
repeated during capture of each of the other wedge-shaped
portions.
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Capturing in this manner may allow the director to be
on-set to direct all talent. When the scene consists of
multiple wedge-shaped portions containing action, each
piece of action may be carefully timed to the first piece of
action captured. One method for doing this is to record audio
of the first action captured and playback the captured audio
for the other action pieces to act against. This may help to
maintain consistency between action sequences captured at
different times that are to be merged together to occur
synchronously in the combined video.

Audio

During the video capture process, audio may be captured
along with the video, at least for one or more of the wedges.
If desired, the audio may be captured as a sound field in
which the viewer’s position affects the relative volume of
sounds occurring in the scene. Multiple microphones may be
distributed throughout the scene in order to accomplish this.
As mentioned previously, audio for the first video sequence
to be captured may be played for actors to act against in the
capture of subsequent wedge-shaped portions. Audio from
subsequent videos may also be captured and combined with
that of the first video sequence in the combined video. Audio
may be tied to the source in the combined video to enable
viewer to experience realistic sound that varies depending
on the position and/or orientation of his or her head.

In some embodiments, audio may be captured with a tetra
microphone (with simplistic ambisonic processing) located
at the camera plane, and also with lavalier microphones
located on each actor. All audio sources may be mixed
together with additional foley using mixing software such as
Two Big Ears. Such software may optionally be integrated
into a virtual reality player to facilitate accurate audio
playback.

Combining Video

As mentioned previously, captured video and/or images
may be stitched together to generate a combined video
depicting a 360° view, as in the step 180. The video to be
stitched together may be light-field video. The captured
video and/or images may be stitched together in such a
manner that the combined video is substantially without
duplicative inclusion of any overlapping portions of the
captured video and/or images. This means that any dupli-
cative inclusion of overlapping portions is small enough that
it does not detract in a meaningful way from the viewer’s
experience in viewing the combined video. In some embodi-
ments, one of each pair of overlapping portions may be
omitted. In other embodiments, each pair of overlapping
portions may be blended together in a manner that provides
the impression of a continuous image or video that spans the
corresponding adjacent portions of the scene.

In some embodiments, light-field video stitching may be
accomplished by treating the camera system 200, rotated
toward the five different wedge-shaped portions, as one
virtual camera that consists of all the cameras facing 5
different directions. For example, if the camera system 200
consists of N cameras 210, then the virtual camera rig with
5 rotations may consist of a total of 5xN cameras. The
virtual camera may be used to accurately compare and/or
otherwise evaluate the overlapping portions between adja-
cent viewpoints to facilitate the substantially seamless and
non-duplicative combination mentioned above.

Further, the light-field stitching process may be facilitated
by using the precise rotational angle of the camera system
200 during the capture process for each wedge-shaped
portion. This rotational angle may be used to align the
captured video streams properly with each other, thus ensur-
ing that any overlapping video portions are substantially
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identical. For the overlapping video portions, one of the
overlapping portions may be omitted, or the two overlapping
video portions may be blended together through the use of
various techniques to ensure that no discrepancies are visible
in the combined video. The spin-bundle routine and other
calibration routines set forth above may help to accomplish
this. Further usage of lasers to precisely orient the camera
system 200 may enable the camera system 200 to be
repeatedly turned to the same precise orientation for capture
of each of the five wedge-shaped portions.

The following information may be used in the stitching
process: (1) RGB frames for each capture element, (2) depth
information, such as depth maps, which correspond to the
RGB frames, and (3) a virtual camera system that is a true
world representation of the actual camera system used to
capture the video. Regarding the depth information, LiDAR
equipment or other depth measurement techniques may be
used to obtain the depth map(s), for example, in a point
cloud format. The depth information may optionally be
obtained from multiple viewpoints to provide a more accu-
rate estimate of the depth of the objects. The accuracy of the
depth information and its alignment to the RGB information
from the video and/or images captured by the camera system
200 may be keys to accurate and seamless stitching. In some
embodiments, one or more of the following methods may be
used to clean up depth information: (1) LiDAR replacement,
(2) geo replacement, (3) using filters to flatten or reduce
noise, and (4) paint and rotoscoping techniques. Depth
estimation from a multi-camera system is described in
further detail in U.S. Provisional Application Ser. No.
62/333,637 for “Image Capture for Virtual Reality
Displays,”, filed May 9, 2016, the disclosure of which is
incorporated herein by reference in its entirety.

The depth maps(s) may be combined with the captured
video and/or images to provide a real-world construction of
the set. Post-production tools may be used to add computer-
generated elements. After such computer-generated ele-
ments have been added, they can be rendered using the
virtual camera system. This may be done through the use of
any of a number of depth image-based rendering (DIBR)
techniques known in the art. This may result in generation of
combined video in which computer-generated elements are
accurately matched to the light-field that was captured on the
set.

Flexible Wedge-Based Video Capture

In some instances, the capture of light-field video depict-
ing action across the wedges or field-of-view of a camera,
such as the camera system 200, may pose a unique chal-
lenge. Verbal interactions from one camera wedge to another
may be simulated by capturing the video from those wedges
separately while implementing careful timing into the direc-
tion of the scene’s interaction and post production. However,
additional steps may need to be taken in order to seamlessly
record a person or other object physically moving from the
field-of-view of one wedge to another. Flexible wedge-based
shooting may provide a solution to this problem.

Specifically, rather than recording action in individual
fixed viewing wedges, and then re-assembling the video
captured for those wedges in post-production, flexible
wedge-based shooting may incorporate motion into the
camera system 200 while recording video. The motion of the
camera or camera array may be limited to one degree of
freedom such as panning to follow action moving across the
stage. Alternatively, the camera may move in a more com-
plex manner, from two degrees of freedom (such as panning
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and tilting) to a motion platform with six degrees of free-
dom, enabling translation along and rotation about all three
orthogonal axes.

The motion of the camera system 200 may actuated in
several ways, including but not limited to the following:

Rotary and/or linear motion through the use of electric
actuation (rotary motors, linear motors, and/or trans-
mission systems such as gearing systems, leadscrews,
belts, linkages, and the like);

Rotary and/or linear motion through the use of hydraulic
or pneumatic actuation (hydraulic or pneumatic cylin-
ders, pistons, and/or transmission systems such as
gearing systems, belts, linkages, and the like); and

Rotary and/or linear motion through the use of manual
actuation, for example, via a camera operator who
manually causes translation and/or rotation of the cam-
era system 200.

During recording, the physical position and/or orientation
of the camera system 200 in space may be recorded in sync
with the video capture. The resulting position and/or orien-
tation data may be used in the post production process to
regenerate a seamless scene. The position and/or orientation
of the camera system 200 may be recorded in several ways.
According to some examples, this data may be obtained
through the use of rotary and/or linear position tracking
devices on the actuators or moving axes. The position and/or
orientation data may be obtained as feedback from devices
such as potentiometers, optical rotary encoders, electrical or
optical linear encoders, and/or other variants such as linear
variable displacement transducers (LVDT’s) and the like.

In alternative embodiments, the position and/or orienta-
tion of the camera system 200 may be tracked through the
use of one or more non-moving objects, targets, and/or
features, which can be located in a position visible to the
camera system 200 throughout its motion in that scene. Such
objects, targets, and/or features may be naturally occurring
in the scene, or may be intentionally placed in the scene for
reference. The position and/or orientation of the objects,
targets, and/or features in the scene may then be used in
post-production to ascertain the position and/or orientation
of the camera system 200 at each time interval.

The above description and referenced drawings set forth
particular details with respect to possible embodiments.
Those of skill in the art will appreciate that the techniques
described herein may be practiced in other embodiments.
First, the particular naming of the components, capitaliza-
tion of terms, the attributes, data structures, or any other
programming or structural aspect is not mandatory or sig-
nificant, and the mechanisms that implement the techniques
described herein may have different names, formats, or
protocols. Further, the system may be implemented via a
combination of hardware and software, as described, or
entirely in hardware elements, or entirely in software ele-
ments. Also, the particular division of functionality between
the various system components described herein is merely
exemplary, and not mandatory; functions performed by a
single system component may instead be performed by
multiple components, and functions performed by multiple
components may instead be performed by a single compo-
nent.

Reference in the specification to “one embodiment™ or to
“an embodiment” means that a particular feature, structure,
or characteristic described in connection with the embodi-
ments is included in at least one embodiment. The appear-
ances of the phrase “in one embodiment” in various places
in the specification are not necessarily all referring to the
same embodiment.
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Some embodiments may include a system or a method for
performing the above-described techniques, either singly or
in any combination. Other embodiments may include a
computer program product comprising a non-transitory
computer-readable storage medium and computer program
code, encoded on the medium, for causing a processor in a
computing device or other electronic device to perform the
above-described techniques.

Some portions of the above are presented in terms of
algorithms and symbolic representations of operations on
data bits within a memory of a computing device. These
algorithmic descriptions and representations are the means
used by those skilled in the data processing arts to most
effectively convey the substance of their work to others
skilled in the art. An algorithm is here, and generally,
conceived to be a self-consistent sequence of steps (instruc-
tions) leading to a desired result. The steps are those
requiring physical manipulations of physical quantities.
Usually, though not necessarily, these quantities take the
form of electrical, magnetic or optical signals capable of
being stored, transferred, combined, compared and other-
wise manipulated. It is convenient at times, principally for
reasons of common usage, to refer to these signals as bits,
values, elements, symbols, characters, terms, numbers, or
the like. Furthermore, it is also convenient at times, to refer
to certain arrangements of steps requiring physical manipu-
lations of physical quantities as modules or code devices,
without loss of generality.

It should be borne in mind, however, that all of these and
similar terms are to be associated with the appropriate
physical quantities and are merely convenient labels applied
to these quantities. Unless specifically stated otherwise as
apparent from the following discussion, it is appreciated that
throughout the description, discussions utilizing terms such
as “processing” or “computing” or “calculating” or “dis-
playing” or “determining” or the like, refer to the action and
processes of a computer system, or similar electronic com-
puting module and/or device, that manipulates and trans-
forms data represented as physical (electronic) quantities
within the computer system memories or registers or other
such information storage, transmission or display devices.

Certain aspects include process steps and instructions
described herein in the form of an algorithm. It should be
noted that the process steps and instructions of described
herein can be embodied in software, firmware and/or hard-
ware, and when embodied in software, can be downloaded
to reside on and be operated from different platforms used by
a variety of operating systems.

Some embodiments relate to an apparatus for performing
the operations described herein. This apparatus may be
specially constructed for the required purposes, or it may
comprise a general-purpose computing device selectively
activated or reconfigured by a computer program stored in
the computing device. Such a computer program may be
stored in a computer readable storage medium, such as, but
is not limited to, any type of disk including floppy disks,
optical disks, CD-ROMs, magnetic-optical disks, read-only
memories (ROMs), random access memories (RAMs),
EPROMs, EEPROMs, flash memory, solid state drives,
magnetic or optical cards, application specific integrated
circuits (ASICs), and/or any type of media suitable for
storing electronic instructions, and each coupled to a com-
puter system bus. Further, the computing devices referred to
herein may include a single processor or may be architec-
tures employing multiple processor designs for increased
computing capability.
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The algorithms and displays presented herein are not
inherently related to any particular computing device, vir-
tualized system, or other apparatus. Various general-purpose
systems may also be used with programs in accordance with
the teachings herein, or it may prove convenient to construct
more specialized apparatus to perform the required method
steps. The required structure for a variety of these systems
will be apparent from the description provided herein. In
addition, the techniques set forth herein are not described
with reference to any particular programming language. It
will be appreciated that a variety of programming languages
may be used to implement the techniques described herein,
and any references above to specific languages are provided
for illustrative purposes only.

Accordingly, in various embodiments, the techniques
described herein can be implemented as software, hardware,
and/or other elements for controlling a computer system,
computing device, or other electronic device, or any com-
bination or plurality thereof. Such an electronic device can
include, for example, a processor, an input device (such as
a keyboard, mouse, touchpad, trackpad, joystick, trackball,
microphone, and/or any combination thereof), an output
device (such as a screen, speaker, and/or the like), memory,
long-term storage (such as magnetic storage, optical storage,
and/or the like), and/or network connectivity, according to
techniques that are well known in the art. Such an electronic
device may be portable or non-portable. Examples of elec-
tronic devices that may be used for implementing the
techniques described herein include: a mobile phone, per-
sonal digital assistant, smartphone, kiosk, server computer,
enterprise computing device, desktop computer, laptop com-
puter, tablet computer, consumer electronic device, televi-
sion, set-top box, or the like. An electronic device for
implementing the techniques described herein may use any
operating system such as, for example: Linux; Microsoft
Windows, available from Microsoft Corporation of Red-
mond, Wash.; Mac OS X, available from Apple Inc. of
Cupertino, Calif.; 108, available from Apple Inc. of Cuper-
tino, Calif.; Android, available from Google, Inc. of Moun-
tain View, Calif.; and/or any other operating system that is
adapted for use on the device.

In various embodiments, the techniques described herein
can be implemented in a distributed processing environ-
ment, networked computing environment, or web-based
computing environment. Elements can be implemented on
client computing devices, servers, routers, and/or other
network or non-network components. In some embodi-
ments, the techniques described herein are implemented
using a client/server architecture, wherein some components
are implemented on one or more client computing devices
and other components are implemented on one or more
servers. In one embodiment, in the course of implementing
the techniques of the present disclosure, client(s) request
content from server(s), and server(s) return content in
response to the requests. A browser may be installed at the
client computing device for enabling such requests and
responses, and for providing a user interface by which the
user can initiate and control such interactions and view the
presented content.

Any or all of the network components for implementing
the described technology may, in some embodiments, be
communicatively coupled with one another using any suit-
able electronic network, whether wired or wireless or any
combination thereof, and using any suitable protocols for
enabling such communication. One example of such a
network is the Internet, although the techniques described
herein can be implemented using other networks as well.
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While a limited number of embodiments has been
described herein, those skilled in the art, having benefit of
the above description, will appreciate that other embodi-
ments may be devised which do not depart from the scope
of the claims. In addition, it should be noted that the
language used in the specification has been principally
selected for readability and instructional purposes, and may
not have been selected to delineate or circumscribe the
inventive subject matter. Accordingly, the disclosure is
intended to be illustrative, but not limiting.

What is claimed is:

1. A method for generating a combined video of a scene,
the method comprising:

orienting a camera system at a first orientation;

with the camera system at the first orientation, capturing

first video of a first portion of a scene, wherein cap-
turing the first video includes applying a lighting pat-
tern to the scene, the lighting pattern comprising at least
a first lighting change occurring at a first time within a
first timeline in which the first video is captured;

rotating the camera system from the first orientation to a

second orientation;
with the camera system at the second orientation, captur-
ing second video of a second portion, offset from the
first portion, of the scene such that the first video and
the second video each comprise an overlapping video
portion depicting an overlapping portion of the scene in
which the first portion and the second portion of the
scene overlap with each other, wherein capturing the
second video includes applying the lighting pattern to
the scene such that the first lighting change occurs at
the first time within a second timeline in which the
second video is captured; and
at a processor, combining the first video and the second
video to generate a combined video depicting the first
portion and the second portion of the scene substan-
tially without duplicative inclusion of the overlapping
video portion.
2. The method of claim 1, further comprising:
rotating the camera system from the second orientation to
a third orientation;

with the camera system at the third orientation, capturing
third video of a third portion, offset from the first
portion and the second portion, of the scene;

rotating the camera system from the third orientation to a

fourth orientation;

with the camera system at the fourth orientation, captur-

ing fourth video of a fourth portion, offset from the first
portion, the second portion, and the third portion, of the
scene; and
rotating the camera system from the fourth orientation to
a fifth orientation;

with the camera system at the fifth orientation, capturing
fifth video of a fifth portion, offset from the first
portion, the second portion, the third portion, and the
fourth portion of the scene;

wherein generating the combined video further comprises

combining the third video, the fourth video, and the
fifth video with the first video and the second video to
generate the combined video depicting the first portion,
the second portion, the third portion, the fourth portion,
and the fitth portion of the scene.

3. The method of claim 1, wherein generating the com-
bined video further comprises adding at least a first com-
puter-generated element into at least one of the first video
and the second video.
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4. The method of claim 3, further comprising generating
a depth map indicating a relative depth of objects in the first
portion and the second portion of the scene;

wherein adding at least the first computer-generated ele-

ment into at least one of the first video and the second
video comprises positioning the first computer-gener-
ated element at a first depth within the depth map.

5. The method of claim 1, further comprising:

positioning a calibration chart within the first portion of

the scene; and

calibrating the camera system by capturing first calibra-

tion video depicting the first portion of the scene with
the calibration chart positioned within the first portion.

6. The method of claim 5, further comprising:

positioning the calibration chart within the overlapping

portion of the scene;

wherein calibrating the camera system further comprises

capturing overlapping calibration video depicting the
overlapping portion with the calibration chart posi-
tioned within the overlapping portion.

7. A method for generating a combined video of a scene,
the method comprising:

calibrating a camera system comprising a camera array

having a plurality of cameras arranged in a regular
pattern to generate a virtual camera system comprising
a plurality of virtual cameras, each of which has virtual
characteristics that mimic operating characteristics of a
corresponding one of the plurality of cameras;
orienting the camera system at a first orientation;

with the camera system at the first orientation, capturing

first video of a first portion of a scene;

rotating the camera system from the first orientation to a

second orientation;

with the camera system at the second orientation, captur-

ing second video of a second portion, offset from the
first portion, of the scene such that the first video and
the second video each comprise an overlapping video
portion depicting an overlapping portion of the scene in
which the first portion and the second portion of the
scene overlap with each other; and

at a processor, combining the first video and the second

video to generate a combined video depicting the first
portion and the second portion of the scene substan-
tially without duplicative inclusion of the overlapping
video portion.

8. The method of claim 7, wherein the regular pattern
comprises a planar shape.

9. The method of claim 7, wherein each of the cameras
comprises a light-field camera.

10. The method of claim 7, wherein:

the plurality of cameras comprise a central camera posi-

tioned at a center of the regular pattern; and

rotating the camera system from the first orientation to the

second orientation comprises rotating the camera sys-
tem about an axis passing through a nodal point of the
central camera.

11. The method of claim 7, wherein combining the first
video with the second video comprises using the virtual
camera system.

12. The method of claim 7, wherein generating the
combined video further comprises adding at least a first
computer-generated element into at least one of the first
video and the second video.

13. The method of claim 12, further comprising:

generating a depth map indicating a relative depth of

objects in the first portion and the second portion of the
scene; and
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wherein adding at least the first computer-generated ele-
ment into at least one of the first video and the second
video comprises positioning the first computer-gener-
ated element at a first depth within the depth map.
14. A method for generating a combined video of a scene,
the method comprising:
orienting a camera system at a first orientation;
with the camera system at the first orientation, capturing
first video of a first portion of a scene;
rotating the camera system from the first orientation to a
second orientation;
with the camera system at the second orientation, captur-
ing second video of a second portion, offset from the
first portion, of the scene such that the first video and
the second video each comprise an overlapping video
portion depicting an overlapping portion of the scene in
which the first portion and the second portion of the
scene overlap with each other;
at a processor, combining the first video and the second
video to generate a combined video depicting the first
portion and the second portion of the scene substan-
tially without duplicative inclusion of the overlapping
video portion; and
prior to capturing the first video, designating a subset of
the first portion of the scene as a safe zone that is
out-side the overlapping portion.
15. The method of claim 14, wherein designating the
subset of the first portion of the scene as the safe zone
comprises, with a laser, projecting a beam into the first
portion of the scene, proximate a boundary of the safe zone.
16. A system for generating a combined video of a scene,
the system comprising:
a camera system that is rotatable between at least a first
orientation and a second orientation, wherein the cam-
era system is configured to:
in the first orientation, capture first video of a first
portion of a scene; and

in the second orientation, capture second video of a
second portion, offset from the first portion, of the
scene such that the first video and the second video
each comprise an overlapping video portion depict-
ing an overlapping portion of the scene in which the
first portion and the second portion of the scene
overlap with each other;

a processor, communicatively coupled to the camera
system, configured to combine the first video and the
second video to generate a combined video depicting
the first portion and the second portion of the scene
substantially without duplicative inclusion of the over-
lapping video portion; and

a laser configured to designate a subset of the first portion
of the scene as a safe zone that is outside the overlap-
ping portion by projecting a beam into the first portion
of the scene, proximate a boundary of the safe zone.

17. The system of claim 16, wherein the processor is
further configured to:

generate a depth map indicating a relative depth of objects
in the first portion and the second portion of the scene;
and

generate the combined video further by adding at least a
first computer-generated element into at least one of the
first video and the second video by positioning the first
computer-generated element at a first depth within the
depth map.

18. The system of claim 16, further comprising a calibra-

tion chart configured to be positioned within the first portion
of the scene or within the overlapping portion of the scene;
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wherein the camera system is further configured to
undergo calibration by:
capturing first calibration video depicting the first por-
tion of the scene with the calibration chart positioned
within the first portion; and
capturing overlapping calibration video depicting the
overlapping portion with the calibration chart posi-
tioned within the overlapping portion.
19. A system for generating a combined video of a scene,
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a camera system that is rotatable between at least a first
orientation and a second orientation, the camera system
comprising a camera array having a plurality of cam-
eras arranged in a regular pattern, and wherein the
camera system is configured to:
in the first orientation, capture first video of a first
portion of a scene; and

in the second orientation, capture second video of a
second portion, offset from the first portion, of the
scene such that the first video and the second video
each comprise an overlapping video portion depict-
ing an overlapping portion of the scene in which the
first portion and the second portion of the scene
overlap with each other; and
a processor, communicatively coupled to the camera
system, configured to:
generate a virtual camera system via calibration of the
camera system, the virtual camera system compris-
ing a plurality of virtual cameras, each of which has
virtual characteristics that mimic operating charac-
teristics of a corresponding one of the plurality of
cameras; and

combine the first video and the second video using the
virtual camera system to generate a combined video
depicting the first portion and the second portion of
the scene substantially without duplicative inclusion
of the overlapping video portion.

20. The system of claim 19, wherein the regular pattern

comprises a planar shape.
21. The system of claim 19, wherein:
the plurality of cameras comprise a central camera posi-
tioned at a center of the regular pattern; and
the camera system is further configured such that rotating
the camera system from the first orientation to the
second orientation comprises rotating the camera sys-
tem about an axis passing through a nodal point of the
central camera.
22. The system of claim 19, wherein:
the camera system is further rotatable between the first
orientation, the second orientation, a third orientation,
a fourth orientation, and a fifth orientation, wherein the
camera system is further configured to:
in the third orientation, capturing third video of a third
portion, offset from the first portion and the second
portion, of the scene;

in the fourth orientation, capturing fourth video of a
fourth portion, offset from the first portion, the
second portion, and the third portion, of the scene;
and

in the fifth orientation, capturing fifth video of a fifth
portion, offset from the first portion, the second
portion, the third portion, and the fourth portion of
the scene; and

the processor is further configured to generate the com-
bined video by combining the third video, the fourth
video, and the fifth video with the first video and the
second video to generate the combined video depicting
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the first portion, the second portion, the third portion,
the fourth portion, and the fifth portion of the scene.
23. The system of claim 19, further comprising a calibra-
tion chart configured to be positioned within the first portion
of the scene or within the overlapping portion of the scene;
wherein the camera system is further configured to
undergo calibration by:
capturing first calibration video depicting the first por-
tion of the scene with the calibration chart positioned
within the first portion; and
capturing overlapping calibration video depicting the
overlapping portion with the calibration chart posi-
tioned within the overlapping portion.
24. The system of claim 19, wherein the processor is
further configured to:
generate a depth map indicating a relative depth of objects
in the first portion and the second portion of the scene;
and
generate the combined video further by adding at least a
first computer-generated element into at least one of the
first video and the second video by positioning the first
computer-generated element at a first depth within the
depth map.
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