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CHARACTER DEFORMATION PIPELINE
FOR COMPUTER-GENERATED ANIMATION

CROSS-REFERENCE TO RELATED
APPLICATIONS

This application is related to the following commonly
owned and co-pending U.S. patent application, the disclo-
sure of which is incorporated herein by reference:

U.S. patent application Ser. No. 10/769,154, entitled

“Wrap Deformation Using Subdivision Surfaces,” filed
Jan. 29, 2004.

BACKGROUND OF THE INVENTION

1. Field of the Invention

The present invention relates generally to computer-
generated graphics and animation, and more particularly to
techniques for defining and establishing a deformation pipe-
line for use in computer animation.

2. Description of the Background Art

A central task in computer-generated (CG) animation is
the construction of efficient and flexible deformations of
three-dimensional (3D) characters in a way that satisty the
artistic demands of animators. When such deformations are
provided with sufficient flexibility, animators are able to
bring a higher degree of expressiveness to their 3D charac-
ters.

As the CG animation industry matures, new efforts are
being made to make CG animation as expressive and free
form as traditional hand-drawn animation. Since its incep-
tion, CG animation has often relied on the principles of
robotics in order to describe motions, constraints and 3D
boundary detection. This is philosophically very different to
the silhouette-driven style of traditional two-dimensional
(2D) hand-drawn animation. Bridging the gap between the
lively and expressive 2D animation and more mechanical
and constrained 3D techniques is an important goal of many
CG animation studios.

Traditional hand-drawn animated characters come from
the mind and hands of a traditional artist. By contrast, a CG
character is generated from a model, or file, in a computer
system that describes a collection of 3D surfaces in some
mathematical form. CG artists use computer systems and
animation software to create, edit and manipulate these 3D
surfaces. CG animations are then created by animation
software that deforms the original poses of the CG charac-
ters into an animated sequence over a number of frames.
Digital artists control the poses of the CG characters at a
number of frames using character rigs, which are conven-
tionally provided as a collection of scripts, software sub-
systems and animation curves that specify the motions,
timings and positions of the 3D character as a function of
time.

CG characters, also known as models, are typically a
collection of surfaces represented mathematically either as
parametric surfaces (Bezier Patches, NURBS, Catmull-
Clark, B-splines, etc.) or as high-resolution polygonal
meshes. These methods for representing CG surfaces are
well known in the industry. Parametric surfaces are made out
of a number of control vertices (CVs), which together with
an appropriate basis set describe the shape of a continuous
and smooth 3D surface in space. Polygonal meshes, on the
other hand, are generally a collection of points in space
connected to each other to form a polyhedron; in general,
polygonal meshes are more primitive than parametric sur-
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2

faces. In the following description, the term “vertices™ is
used to refer generally to either CVs (e.g., of a parametric
surface) or points.

Each of these representations has its advantages and
disadvantages. In the CG film industry parametric surfaces
are often preferred over polygonal meshes because the
continuous properties of parametric surfaces tend to produce
higher-quality images when rendered at high resolution.
Polygonal meshes, on the other hand, are often preferred in
the CG game industry because of their lightweight data
representation and evaluation.

Polygonal meshes have free form topology; that is, the
vertices in the mesh can connect with each other arbitrarily.
On the other hand, traditional parametric surfaces such as
NURBS (Non-Uniform Rational B-Splines) have a fixed
topology in which vertices are interconnected in a quadri-
lateral array. Subdivision surfaces, like Catmull-Clark sur-
faces, offer a compromise between these two approaches,
having the free form topology of polygonal meshes while
still maintaining a local parametric representation and
smoothness.

CG animation models are typically built using standard
commercial software that allows digital artists to sculpt 3D
objects in the computer. Conventional commercial packages
for CG animation include products such as: Maya®, avail-
able from Alias Systems of Toronto, Canada; Studio Max,
available from Discreet of Montreal, Canada; Softlmage,
available from Avid Technology, Inc. of Tewksbury, Mass.;
and LightWave 3D®, available from NewTek, Inc. of San
Antonio, Tex.

Alternatively, some animators use traditional clay models
as their starting points for CG characters. The clay is then
scanned in 3D on the computer, imported into one of the
commercial packages mentioned above and edited for cor-
rections.

Construction of a character rig for animating models
using conventional techniques tends to be labor-intensive,
requiring a great deal of artistic experience in order to make
the best use of the deformers available in the commercial
package to drive the model in the desired manner. The
design and development of the character rig are key factors
in the overall quality of the resultant animation product,
since the rig effectively determines the range of possible
motions and deformations available to the animator.

A rig typically includes a skeleton system, including a set
of CG joints that control the bending, torsion and deforma-
tion of the underlying structure of the character. The joints
of the skeletons are controlled through animation curves
created by the CG animator. A mathematical description is
established for connections between skeleton joint locations
and positions of vertices of surfaces in the CG model. For
example, in one pose the skeleton of a humanoid rests in
standing position and in another pose the skeleton sits in a
chair. It is preferable to provide a mathematical description
that drives the CG models to deform from the standing to
sitting position smoothly as the skeleton switches positions.
Most commercial packages provide a binding mechanism
that links the positions of skeleton joints to the locations of
vertices in the CG model. Each vertex moves according to
a multi-linear combination of motions of nearby joints.

Weights can be provided to guide the multi-linear com-
bination so that the motion of the surface is smooth. Con-
ventionally, setting up the weights for the joints in the
skeleton on a given character is a manual process that can be
very labor-intensive. Moreover, the weighting of vertices for
the skeleton binding is highly sensitive to changes of the
structure of the surfaces on the CG character. Changes such
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as adding or removing a vertex on the surface, changing its
parametric structure, or the like, generally void the work
done on the binding weighting, forcing the individual to
begin again.

In general, any significant editing changes on the CG
model cause the weighting work done on the skeleton
binding of a character to be voided. In addition, a character
rig of a CG model cannot be easily transferred to another
character that might be morphologically similar but different
in terms of CG model (for example, having a different
number of surfaces, number of vertices, alignment, or the
like). Accordingly, character rigs generated by conventional
software packages are not generic, meaning that they cannot
be easily transferred from one CG model to another.

In addition, in film production the design of a character is
often changed after a rig has been generated. Convention-
ally, most of the rigging work must then be discarded and a
new rig restarted in order to adapt to these changes. What is
needed, therefore, is a system and method for representing
a character rig that is more independent from the specifics of
any particular model. What is further needed is a system and
method that provides CG animators with the ability to more
effectively adapt to changes so as to provide significant cost
savings. What is needed, therefore, is a system and method
that allows technical directors to create generic rigs for
animating whole families of characters, thus having appli-
cability in crowd animations and simulations.

An additional challenge that exists in animation today is
to bridge the gap between traditional (2D) and CG (3D)
animation. Conventional systems are ill suited for such
bridging, because of differences in character rigging style
and also because of limitations in the layering of deforma-
tions (the way in which multiple deformers apply their effect
onto the same surface of a CG model) offered by current
commercially available and proprietary systems.

As discussed above, conventionally a skeleton binds to a
CG model via a set of weighted multi-linear interpolations
between joint positions and vertex initial locations. This
binding normally takes care of the principal deformations of
a CG model, such as for example the bending of an arm.
However, typical CG characters for film are more complex,
having numerous secondary motions taken care of by other
deformers in the rig that superimpose their effects on top of
the skeleton binding. For example, a deformer may be
provided that bulges the bicep of the arm as it bends.
Conventionally, such deformations are superimposed using
any of a number of layering schemes such as sequential,
parallel and/or blending. In a sequential layering scheme, the
deformations are applied in the space of the post-deformed
surface. In a parallel layering scheme, the deformations are
applied simultaneously on the same pre-deformed space. In
a blending layering scheme, a linear combination of the
deformations is applied to the original pre-deformed surface.

Conventional implementations of these sequential, blend-
ing and parallel layering schemes are, in general, very
diverse and difficult to unify into a single scheme. What is
needed, therefore, is a character rigging system and method
that provides a serialized representation of sequential, blend-
ing and parallel layering schemes. What is further needed is
a system and method that is amenable to being divided and
ported into a hardware API system.

Another significant limitation of conventional rig systems
is an inability to provide a simple and model-independent
way to create a hierarchical layering of deformations. A
hierarchical layering is to one in which a later deformation
is applied in the local space of the surface resulting from an
earlier deformation. Hierarchical layering differs from
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4

sequential layering as follows. In a sequential layering
scheme, the second deformation is applied in the global
space of the surface deformed by the first deformation. For
example the first deformer may bend a plane, while the
second deformer grows a cone in a certain region of the
bending plane. The cone always points in the same direction,
no matter how the plane is bent. In a hierarchical deforma-
tion, the second deformation’s effect are applied in the local
space of each vertices deformed by the first deformation.
Following the same example, then, in a hierarchical scheme
a cone grown perpendicular to the surface of the plane would
remain perpendicular to the plane regardless of how the first
deformer changes the bending of the plane.

Hierarchical B-Splines are described, for example, in D.
R. Forsey, R. H. Bartels AMC Transactions on Graphics Vol.
14 134-161 (1995). HB-Splines are parametric surfaces
similar to B-Splines, except that the parametric domain in
which they are defined can be redefined hierarchically with
more detail where needed. By contrast, in a standard
B-Spline, in order to increase the detail of the surface in a
small region, one is forced to increase the resolution uni-
formly everywhere.

Hierarchical surfaces allow layering of deformations not
only in the local space of the vertices, but also by scales. For
example, a first deformer can create an overall squeeze and
stretch deformation while a second deformation affects a
small feature on a localized region of the surface, such as
opening an eye. This hierarchical methodology for layering
deformations and breaking up their scales is useful in
making CG rigs more traditional-looking when animated.

For several reasons, existing hierarchical methodologies
fall short of the actual CG production needs. Firstly, because
the hierarchy is built in to the surface representation, hier-
archical deformations do not generally work with surfaces
such as polygonal meshes, NURBS, or Catmull-Clark sur-
faces. Secondly, hierarchical surfaces such as HB-Splines
often fail to adapt satisfactorily to production changes. The
parameter space is represented by a tree-like data structure,
so that changes on the broad parametrization of the surface
tend to invalidate the branches of the tree. For example, if a
hierarchical surface is built as a horn extruded out of a
sphere, then changing the underlying sphere form to open a
mouth voids the work done on the horn. HB-Splines are also
heavy structures that take a great deal of time to update.

What is needed, then, is a system and method that
provides the advantages of hierarchically layered deforma-
tions without relying on a specially defined type of surface.

What is further needed is a rigging system and method
capable of advanced layering methodologies, including hier-
archical techniques, that can work with simple forms of CG
models.

What is further needed is a technique for generating and
manipulating generic, portable character rigs that avoid the
limitations and disadvantages of prior art schemes.

What is further needed is a technique that allows digital
artists to decouple the rigs used for the animation of com-
puter-generated characters from the specifics of the models
themselves

What is further needed is a technique that improves
flexibility so as to provide the potential for more expressive
animated characters

What is further needed is a technique that serializes
complex deformations in order to improve performance and
to facilitate hardware implementation.
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SUMMARY OF THE INVENTION

The present invention provides a more flexible system for
character deformation that allows digital artists to create
more fluid deformations for their 3D characters, thus
approximating the techniques available to 2D artists.
According to the techniques of the present invention, a
character deformation pipeline is established for CG anima-
tion, so as to address the above-described needs and to avoid
the limitations of prior art schemes.

According to one embodiment, the invention is imple-
mented using a data stream abstraction of one or more CG
models. A serialized stack-like pipeline of modules is estab-
lished; each module takes the data stream, deforms it, and
passes it to the next module. This serialized architecture for
the pipeline facilitates complex layering schemes that con-
ventionally would require complex tree dependencies. The
serialized architecture of the present invention unifies
known layering schemes into a single implementation.

According to one embodiment, the present invention
accepts CG models based on simple and common geometri-
cal objects such as polygonal meshes, NURBS, B-Splines,
subdivision surfaces, and the like, while supporting
advanced layering deformation schemes for such objects.

The present invention thus provides a flexible deforma-
tion system that is resilient and able to adapt to the needs of
actual CG production environments. The invention allows
for changes in the CG model even after a character rig has
been created, without invalidating the rigging work. More-
over the rig is generic in the sense that it can be easily ported
between morphologically similar CG models.

Furthermore, the serialized architecture of the deforma-
tion pipeline of the present invention is capable of being
implemented in hardware and/or via a stack based pipeline
such as OpenGL.

According to one embodiment, CG models are abstracted
into a data stream, referred to herein as a Deformation Data
Stream (DDS). The DDS is capable of carrying information
about the geometry of the surfaces of the CG model, as well
as important items regarding the deformation environment
of each of the vertices in the surface. Information on the
deformation environment enables the building of layers of
deformations in multiple spaces: pre-deformed, post-de-
formed, and/or local vertex frames of coordinates. The
vertex environment information thus provides improved
flexibility, since a user can generate deformations according
to many different layering schemes without having to access
data at earlier deformation stages.

In one embodiment, the DDS contains only geometrical
information, that is, information regarding vertex locations
and their deformation environments, and omits information
indicating whether the vertices belong to a NURBS, a mesh
or a subdivision surface. Thus, the deformation pipeline
need not know about the “topology”, the actual surface
parameterization, in order to perform a deformation on the
CG model. In some cases, however, where it is beneficial to
provide deformers with a parametric representation of the
surface containing a vertex, a second data abstraction con-
taining topology descriptions of the surfaces in the CG
model can also be used in the pipeline.

The DDS travels along a pipeline composed of a sequence
of modules, each of which is assigned the task of applying
a specific deformation on the data stream. As CG models
travel through the pipeline’s modules, the modules modify
the models’ vertices and deformation environments. Some
of the modules contain CG skeletons, skinning bindings,
secondary animation deformations, and the like.
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6

In one embodiment, the modules of the present invention
use dynamic binding algorithnis, such as those presented in
related U.S. patent application Ser. No. 10/769,154, entitled
“Wrap Deformation Using Subdivision Surfaces”. For
example, in one embodiment a skeleton binds first to an
intermediate object (referred to as a proxy model). The
proxy model transfers deformations from the joints to the
CG model’s surfaces smoothly. Surfaces are bound to the
proxy model dynamically, so that as the DDS enters a skin
binding module it first finds an appropriate binding location
on the proxy model; transformations are then applied
according to the skeleton’s joint movements. Should the
surfaces in the DDS change on the fly, either because a
similar character is being sent through the pipeline or
because a change to the model has been made, the dynamic
binding finds a new binding location on the proxy model.
The relationship and setup of the CG skeleton to the proxy
model are maintained, thus saving work by technical direc-
tors.

In one embodiment, each module in the pipeline has two
inputs and two outputs, as follows:

a DDS input, including the stream of CG models prior to
deformation;

a topology input, available for the module to use if
needed;

a DDS output, including the stream of CG models after
deformation, and

a topology output, to be passed to the next module to use
if needed.

Additional inputs and outputs may also be provided.

As will be apparent to one skilled in the art, the techniques
of the present invention can be applied to skinning modules
as well as to other types of deformers, such as for example
wire deformers, polywraps, clusters, or the like.

According to the techniques of the present invention,
deformation modules thus dynamically bind to the geometry
in the DDS. Deformers apply their deformations according
to any of four types of layering, or binding modes: sequen-
tial, blending, parallel or hierarchical. Depending on the
selected binding modes, the module binds and deforms the
vertex information in the DDS differently, as is described in
more detail below.

In a sequential binding mode, each deformer layers its
deformation on top of the previously deformed surface.
These deformations are applied using a global system of
coordinates.

In a blending binding mode, each deformer binds to the
original, pre-deformation geometry. The DDS contains the
original vertex position in its description. Each deformer,
after applying its deformation, uses a scalar parameter to
blend (interpolate) its effect with the deformed geometry in
the DDS input, thus adding its effect to the prior sequence
of deformations. The blending binding mode allows a user
to tune in or out the effect of a particular deformation within
a chain of deformers.

In a parallel binding mode, each deformer binds to the
original, pre-deformation geometry, and adds its own con-
tribution to the DDS by vector addition (as opposed to linear
interpolation).

In a hierarchical binding mode, rather than binding
directly to vertices, each deformer binds to local centers of
coordinates for those vertices (these are referred to herein as
binding frames). Each vertex in the DDS has an associated
local frame of coordinates. This frame of coordinates is part
of the deformation environment for the vertex that can be
carried by the DDS. By facilitating deformations about the
local frames of coordinates, the present invention opens
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possibilities for increasingly sophisticated deformations that
pivot vertices about their anchor points, particularly since
each vertex in the DDS can have a different local frame of
coordinates.

The features and advantages described in this summary
and the following detailed description are not all-inclusive.
Many additional features and advantages will be apparent to
one of ordinary skill in the art in view of the drawings,
specification, and claims hereof.

Moreover, it should be noted that the language used in this
disclosure has been principally selected for readability and
instructional purposes, and may not have been selected to
delineate or circumscribe the inventive subject matter, resort
to the claims being necessary to determine such inventive
subject matter.

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1 is a block diagram depicting the flow of a CG
model’s geometry through a deformation pipeline according
to one embodiment of the present invention.

FIG. 2 is a block diagram depicting a pipeline for ani-
mating a series of humanoid characters, according to one
embodiment of the present invention.

FIG. 3 is a block diagram depicting a layout of modules
in a deformation pipeline, according to one embodiment of
the present invention.

FIG. 4 is a block diagram depicting an alternative layout
of modules in a deformation pipeline including branching
and merging of deformations, according to one embodiment
of the present invention.

FIG. 5 is a block diagram depicting a deformation mod-
ule, according to one embodiment.

FIG. 6 depicts a methodology for representing a character
as an element of a deformation data stream, according to one
embodiment.

FIG. 7A through 7D depict an example of a NURBS
sphere bound to a cube polygonal mesh, according to one
embodiment.

FIG. 8 depicts a sample portion of a deformation pipeline
including two proxy/surface binding modules.

FIGS. 9A and 9B depict an example of triangular binding,
shown before and after a deformation.

FIG. 10A depicts an example of a data stream item in
parallel binding mode, according to one embodiment of the
present invention.

FIG. 10B depicts an example of a data stream item in
blending binding mode, according to one embodiment of the
present invention.

FIG. 10C depicts an example of a data stream item in
sequential binding mode, according to one embodiment of
the present invention.

FIG. 10D depicts an example of a data stream item in
hierarchical binding mode, according to one embodiment of
the present invention

FIG. 11 is a block diagram depicting an example of a DDS
item being passed through a filter and a deformation module
that is modified by an accessory masking module.

FIG. 12A is a block diagram depicting an embodiment of
a Cbinding module in which a single polygonal proxy mesh
is used.

FIG. 12B is a block diagram depicting an embodiment of
a Cbinding module in which two topologically identical
polygonal meshes are used, one for binding and one for
updating the binding items.

FIG. 13 is a block diagram depicting weight application
and determination, according to one embodiment.

20

25

30

35

40

45

50

55

60

65

8

The Figures depict a preferred embodiment of the present
invention for purposes of illustration only. One skilled in the
art will readily recognize from the following discussion that
alternative embodiments of the structures and methods illus-
trated herein may be employed without departing from the
principles of the invention described herein

DETAILED DESCRIPTION

The term “surface” as used herein refers to surface
representations such as NURBS, polygons, curves, subdivi-
sions, and the like, and can also include streams of particles
with positions, velocities and accelerations. In general, any
point data carrying user-defined scalars and/or fields can be
considered “geometry” within the context of the present
disclosure, and can be deformed by the techniques of the
present invention.

The techniques described herein are independent of the
particular topology, or point connectivity information, of the
geometry or object being deformed. For illustrative pur-
poses, the following description makes references to ani-
mated characters as the object being deformed; however,
one skilled in the art will recognize that the techniques
described herein can be applied to other types of geometries
and objects.

Referring now to FIG. 1, there is shown a block diagram
depicting the flow of a CG model’s 151 geometry through a
deformation pipeline 100 according to one embodiment of
the present invention. CG model 151 includes a number of
three-dimensional (3D) surfaces 152. As model 151 passes
through pipeline 100, it gets transformed into an animated
model 151A representing a character. Deformation pipeline
100 takes as input surfaces 152 of CG model 151 as well as
corresponding animation curves 153. Each animation curve
153 describes, as a function of time (film frame), the position
of various controls in the CG character rig. Deformers (not
shown in FIG. 1) within deformation pipeline 100 use
animation curves 153 to create deformations on surfaces
152. After all these deformations have been evaluated,
deformation pipeline 100 outputs final deformed surfaces
152A in the animated position. In one embodiment, defor-
mation pipeline 100 is executed for every time frame in
order to produce a sequence of animated poses.

Referring now to FIG. 2, there is shown a block diagram
depicting an example of using pipeline 100 to animate a
series of humanoid characters, represented by models 151,
according to one embodiment of the present invention. Input
to pipeline 100 includes a sequence of characters, repre-
sented by models 151, as well as a sequence of animation
curves 153. The characters are morphologically similar so
that the same deformation pipeline 100 can be applied to all
characters. Each character corresponds to an animation
curve 153. Pipeline 100 generates output including the
original set of characters deformed in animated poses. In one
embodiment, for each value of the animation curves, defor-
mation pipeline 100 creates a character animation pose for
the given time frame.

Referring now to FIG. 3, there is shown an example of
deformation pipeline 100 according to one embodiment.
Pipeline 100 includes a sequence of modules 102, or
deformers, each one accepting a deformation data stream
(DDS 106) and a topology 351. Each module 102 outputs a
DDS 106 and a topology 351. Each module 102 creates a
deformation in the geometry stored in DDS 106. Also
provided are head module 102, which converts geometry
101 of the character(s) into DDS 106, and tail module 104,
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which combines deformed DDS 106 and topology 351 back
together into a geometry output 105.

Now referring to FIG. 4, there is shown an alternative
layout of modules 103 in deformation pipeline 100 including
branching and merging of deformations, according to one
embodiment of the present invention. Multiple sequences of
deformation modules 103 take DDS 106 from head module
102 and transform it in parallel and independently until DDS
106 reaches tail module 104 for its final recombination. In
the parallel layout of FIG. 4, the tail module 104 combines
the various DDS’s 106 linearly with corresponding weights.
Thus, the user can specify that more importance should be
placed on one sequence of deformations over another.

In one embodiment, not all modules 103 in pipeline 100
create a deformation on DDS 106. Some modules 103 may
only affect vertex information on DDS 106, or may filter
DDS 106 to exclude a geometry from further processing.
Such behaviors are described in more detail below.

In one embodiment, each module 102 is an independent
entity that can be duplicated and placed anywhere in pipe-
line 100. In addition, pipeline 100 can be described as a
graph, and can be implemented using well known tech-
niques of graph theory, such as for example a dependency
graph as found in Maya®. One skilled in the art will
recognize that any other dependency graph system can also
be used.

Referring now to FIG. 5, there is shown a block diagram
depicting a deformation module 102, according to one
embodiment. Module 102 functions as an independent unit
that takes as input DDS 106, performs a number of filtering
and/or deformation operations, and then passes transformed
DDS 106 as output. The deformation performed on the
geometry in stream 106 is completely encapsulated in mod-
ule 103. Module 103 need not have any access to any data
structures other than DDS 106 topology 351. Similarly, any
client object of module 103 need not have access to any data
structures other than DDS 106 and topology 351 outputs.

In one embodiment, topology 351 is provided as a data
structure containing information describing the topological
makeup of the geometry encoded in DDS 106. In one
embodiment, topology 351 is a constant structure that mod-
ule 103 reads and passes through to the next module 103.
Thus, module 103 does not perform any modifications to
topology 351. When module 103 detects an update in DDS
106 input or topology 351 input, it triggers a new evaluation.
The new evaluation in turn leads to computation of a new
deformation on DDS 106 input; as a result DDS 106 output
is recomputed and sent to the output attribute of module 103.

In one embodiment, pipeline 100 is implemented in a
hardware graphics card specialized in the deformation of CG
characters for animation and games. An example of such an
implementation makes use of an OpenGL graphics card
using a vertex pipeline of stacked operations, wherein the
stacked operations are DDS 106 operations. As depicted in
the pipeline 100 architecture of FIG. 3, the deformation
change is implemented as a stack of operations happening
sequentially on a DDS 106 data structure. In the hardware
implementation, the hardware card uses an underlying
implementation as described above with respect to FIG. 3;
a software developer creates calls to the modules of the
hardware card after providing some basic setup commands.
Once hardware implemented modules are initialized, a user
of this application can interact with the system as described
above with respect to FIG. 2, by sending one or more CG
models 151 and their respective animation characters so that
the hardware can execute the deformation modules 103
returned the animated CG model.

20

25

30

35

40

45

50

55

60

65

10
Deformation Data Stream (DDS) 106

According to one embodiment of the invention, the
deformed geometry is represented as a deformation data
stream (DDS) 106. The data stream format facilitates a
serialized implementation of deformation pipeline 100 that
can support layering schemes for deformation. In addition,
the serialized implementation is amenable to hardware
implementation, in some embodiments.

Referring now to FIG. 6, there is shown a methodology
for representing a character 501 as an element of data stream
106 for deformation pipeline 100. Character M; 501
includes a number of discrete surfaces, denoted as S,
Sy, ..., S, each corresponding to a block 502 of binding
items 503. Each binding item 503 contains a corresponding
vertex position as well as relevant vertex environment
information for layering sequential, hierarchical, and other
deformations. Surfaces S, of the character are each encoded
as a block 502 of binding items 503. In one embodiment,
each binding item 503 is a data object of the following form,
shown for illustrative purposes in the C++ programming
language:

class Bindingltem {
private:
int tag;
Point cvOrig;
Point cvCurrent;
Point cvProjection;
Frameltem bindingSite;

where:

class Frameltem {
private:
int ID;
Point orig;
Vector basis[3];
double weight;

In one embodiment, the following objects are provided in

the bindingltem structure:

Tag t (Bindingltem::tag) identifying the vertex within the
surface of the object.

Original vertex location C, (Bindingltem::cvOrig) con-
taining the original location of the vertex prior to any
deformation by pipeline 100. In one embodiment, the
coordinates of this vertex location are written in a local
frame of coordinates specified by {O; b0, b1, b2}
(Bindingltem::bindingSite).

For each vertex in block 502 for surface S;, a local
bindingSite, or frame of coordinates. When DDS 106 is
first created by head module 102, all vertices normally
have the same local frame of coordinates (the object
space system of coordinates). However, as DDS 106
streams through modules 103, these local frames of
coordinates may get transformed, as described below,
and may therefore be different even among vertices on
the same surface.

Projection vector o (Bindingltem::cvProjection), which
generally contains components on the {b0, bl, b2}
basis set, describing the post-deformed position of the
vertex. Each module 103 predicts a different deforma-
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tion; according to the binding mode, the actual vertex
coordinates that are being deformed changes, so that it
is not necessarily C,. Each module 103 stores in vector
a the components of that deformation in the local frame
of coordinates.

C, (Bindingltem::cvCurrent), containing the final post-
deformed position of the vertex. This may be different
than the position predicted by a because it includes
weighting, blending equations and any other post-
deformation algorithm the developer of module 103
may wish to apply.

In one embodiment, the Frameltem vertex binding site

data structure includes the following:

ID (Frameltem::ID) represents an integer identifier for the
frame of coordinates, or bindingSite. This frame of
coordinates can be computed and deformed externally
in other structures, as will be described in more detail
below.

O (Frameltem::orig) represents the origin for the local
frame of coordinates or binding site. All other vectors
in binding item 503 are referred to this origin. Hence
deformation modules that manipulate the coordinates
of the origin can create many different hierarchical
effects on the surface vertices without affecting the
relative offsets and orientations with respect to O.

The basis set of the local frame b, b,, b, (Frameltem::
basis[3]) describes the per-vertex system of coordinates
where deformations get stored and, in some cases, evalu-
ated. The deformation pipeline of the present invention does
not necessarily require an orthogonal system of coordinates.
In fact in the Cbinding module, described in related U.S.
patent application Ser. No. 10/769,154, entitled “Wrap
Deformation Using Subdivision Surfaces”, the vectors b, b,
are not necessarily orthogonal in order to describe local
shearing deformations of the vertex binding while b, is
orthogonal to them.

Each local frame has a weight @ (Frameltem::weight)
through which modules can take user input as to how much
of' the full deformation to apply per vertex. When the weight
value is 0, no deformation is applied. When the weight value
is 1, a full deformation is applied. Values between 0 and 1
result in generation of an interpolation between the fully
deformed and undeformed vertex positions.

For purposes of the description provided herein, the term
“point” is used to describe an object representing a vertex or
origin. However, one skilled in the art will recognize that
invention is not restricted to points in a three-dimensional (x,
y, z) Buclidean space. Thus, the term “point” as used herein
shall be considered to refer to other features such as veloci-
ties (for example for a deformation pipeline of particles in an
effects engine) or accelerations (for example in a dynamics
application such as clothing simulation).

Deformation modules 103 can use binding Items 503 in
various ways. A module 103 can focus on the original vertex
location (cvOrig) to create a new deformation based on the
original undeformed surface, or it can ignore the original
vertex location and use the current vertex location (cvCur-
rent) to continue further deformation of the surface, or it can
modify projection o and/or bindingSite to affect the local
frame of coordinates. As will be apparent to one skilled in
the art, the present invention facilitates a large number of
deformation possibilities using a binding item 503 object.

In one embodiment, if the surfaces of CG model 151 are
not static, so that their vertices change over time, then the
updates on the surface vertices flow through the cvOrig item
in the Bindingltem data structure of DDS 106. As a result,
deformations set up for the character at a given pose are
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layered on top of the moving CG model 151 animation. One
example of such a situation is a CG model 151 that is
actually an externally driven blendshape deformation,
wherein pipeline 100 controls secondary movements on
mode] 151.

Thus, the present invention is well adapted to handle a
mix of several types of deformation pipelines 100 that may
be directed toward various specific tasks.

Proxy/Surface Binding Model

As can be seen from the above description, the present
invention supports sophisticated deformation layering
schemes while maintaining a serialized architecture in pipe-
line 100.

In one embodiment, the present invention also provides
support for keeping deformation modules 103 independent
from the specifics of the surfaces of CG model 151. Defor-
mation pipeline 100 can thereby adapt dynamically to
changes in the specifics of CG model 151. For example,
referring again to FIG. 1, in one embodiment pipeline 100 is
independent of the specific topological details of the sur-
faces in CG model 151 and of the number of surfaces.
Pipeline 100, in one embodiment, is also independent of
minor changes in the shape of CG model 151. Thus, artists
using pipeline 100 of the present invention can repeatedly
reuse the same pipeline 100 build for a certain type of
character, through the life of the character during the course
of production. In addition, the same pipeline 100 can be used
with multiple characters having the same morphological
structure.

Related U.S. patent application Ser. No. 10/769,154,
entitled “Wrap Deformation Using Subdivision Surfaces”,
described a technique for wrap deforming arbitrary types of
geometry using subdivision surfaces. Wrap deformation is a
technique for defoirning a geometry surface by using an
auxiliary surface that “wraps” around the first. Generally the
wrap surface is less detailed and resolved, and it is not
uncommon to use polygonal meshes as wrap surfaces for
this type of deformation.

In one embodiment of the invention, the character rig is
decoupled from the actual CG model 151 by using defor-
mation modules 103 that implement a “Proxy/Surface Bind-
ing” model. In the case of a skinning deformation, which
connects skeleton joints to a CG model 151, a proxy model
(generally a rough polygonal mesh representing the CG
model) is included in the deformation module 103, to which
the skeleton joints bind directly. This proxy model then uses
an algorithn, as described in the related U.S. patent appli-
cation, to generate a number of local frames of coordinates
where the vertices of the CG model 151 bind.

Referring now to FIG. 7A through 7D there is shown an
example of a CG model (NURBS sphere 401) and a proxy
model (cube polygonal mesh 402). As shown in FIG. 7A,
proxy model 402 wraps sphere 401 (vertices 405 of sphere
401 are highlighted for clarity). FIG. 7B shows correspond-
ing binding surface 403 between the proxy model 402 and
sphere 401. In this example, binding surface 403 is com-
puted as a Loop subdivision surface associated with the
proxy polygonal mesh 402, as described in more detail in the
related U.S. patent application. Accordingly, any changes to
the vertices of cube 402 transform into smooth and continu-
ous changes on binding surface 403. As is well known in the
art, a Loop subdivision surface is a triangle-based surface of
finite resolution which has a parametric representation at
least locally.

As depicted in FIG. 7C, each vertex 405 on sphere 401
associates, or binds, to the closest triangle 404 on binding
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surface 403. Appropriate offsets and frame of coordinates
are calculated in these binding operations. Referring now to
FIG. 7D, there is shown a detail view of three such bindings
between sphere vertices 405 and triangles 404 on binding
surface 403. Any deformation of the cube polygonal mesh
402 triggers an update of binding surface 403 via the Loop
subdivision algorithm, which in turn propagates through the
binding interface to vertices 405 on sphere 401 (the actual
CG model).

Using these techniques, a proxy model 402 of the CG
character is used to deform a CG model. Thus, the wrap
deformation algorithm allows for a great amount of local
control of deformations. In addition, a CG skeleton can be
bound to proxy model 402, so that the skeleton joints deform
the CG model indirectly by a binding surface mechanism.
An advantage of this extra level of indirection is that the
skeleton/proxy rig combination, once set up and weighted,
can re-bind to multiple forms of CG models without having
to significantly modify the work done on the rig.

One skilled in the art will recognize that the described
algorithm is just one of many possible proxy/surface binding
algorithms that can be used in pipeline 100 of the present
invention. In some embodiments, the present invention
provides modules for proxy binding to polygonal meshes,
parametric curves, NURBS surfaces, systems of particles,
and the like. Similar modules can be developed for other
types of proxy objects.

Referring now to FIG. 8, there is shown a sample portion
of a deformation pipeline 100 including two proxy/surface
binding modules 103A, 103B. Module 103A is a polygonal
mesh proxy/surface binding; module 103B is a parametric
curve proxy/curve binding. Also shown are blocks 502A,
502B, representing items in DDS 106 associated with a CG
model 151A, 151B. When a DDS 106 item enters module
103A, it binds dynamically to the proxy polygonal mesh
402. Existing deformations on the proxy model 402 then
transfer to the vertices in DDS 106 Binding items 503 and
stream 106 moves on to the next deformation module 103B.
As DDS 106 passes through curve proxy/curve binding
module 103B, DDS 106 item follows a similar process by
which its Bindingltems find a binding point on the binding
curve of the parametric curve and get new coordinate
positions for the surfaces on CG model 502 from deforma-
tion module 103B.

Binding surfaces and binding curves can be created from
proxy objects according to any of a number of techniques.
If the proxy object 402 is a polygonal mesh, modules are
provided that use Catmull-Clark and Loop subdivision sur-
faces to generate local binding surfaces. Each polygon in the
subdivision surface has a local frame of coordinates defined
by the tangent vectors on the limit subdivision surface for
the given vertex of the subdivision surface. The finite
resolution of the subdivision surfaces is controlled by
parameters on deformation modules 103, thus allowing
users to adjust for large changes of resolution between
proxies 402 and CG models 151. In the case of NURBS
proxies 402, the convex hull can be used to define a
polygonal mesh; surface binding is computed using the
techniques described above. When proxy object 402 is a
parametric curve, module 103 samples the curve at a given
rate to obtain a sequence of local frames of coordinates. In
order to fully describe a three-dimensional frame of coor-
dinates along the curve, a differential scheme such as the
Frenet or Bishop frames of coordinates is used. Alterna-
tively, module 103 may resort to two curves: one specitying
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the location of the curve prior to the deformation and the
other specifying the location of the curve after the defor-
mation.

As described above, the surfaces 152 of a CG character
are transformed into blocks of Binding items 503 on DDS
106. Among the data contained in binding items 503 is the
bindingSite, a local frame of coordinates for the surface
vertex. Inside each module 103 where a proxy binding
occurs, the bindingSite for each of the vertices gets replaced
by the corresponding surface binding frame of coordinates.
For example, referring again to FIG. 7D, each vertex 405 of
sphere 401 is bound by a nearest neighbor algorithm to a
triangle 404 in binding surface 403 of the Loop subdivision.
Each triangle 404 has a well-defined frame of coordinates,
where the origin is the barycenter; two of the three basis
vectors point from the barycenter to two non-degenerate
triangle vertices, while the third basis vector is normal to the
plane of triangle 404. Then, triangle’s 404 barycenter
replaces the bindingSite.orig variable. The local frame of
coordinates of triangle 404 replaces the vector’s binding-
Site.basis[3], and if there is a weighting value associated
with triangle 404 for use during the deformation algorithni,
that weighting value is assigned to bindingSite.weight.

Referring to FIG. 9A there is shown a local frame of
coordinates for a triangle 404 in a Loop subdivision surface
prior to any deformations on the proxy polygonal mesh 402.
FIG. 9B depicts triangle 404 after proxy polygonal mesh 402
has been modified. Barycenter 504 changes position, and
basis set b0, bl and b2 603, 601, 602 point to different
locations. During the proxy deformation, the cvProjection
components remain constant while the local frame of coor-
dinates changes; as a result, a new location is predicted. In
one embodiment, the cvProjection components are calcu-
lated by caching in deformation module 103 the surface
binding properties prior to any changes in proxy model 402.
In general, these properties remain constant unless the user
triggers a surface rebind event, causing a new surface
binding to be cached by module 103. Thus, in this embodi-
ment of the invention, each module 103 contains two copies
of the proxy binding surface: a static version for computing
cvProjection components, and a dynamic version for updat-
ing the local frames of coordinates in binding items 503 of
DDS 106.

After passing through deformation module 103, each of
the vertices in DDS 106 item has a new frame of coordinates
where the deformation of module 103 was applied locally.
Downstream modules 103 are free to replace or create
hierarchical deformations based on this frame of coordi-
nates. Furthermore, the deformation performed by module
103 is stored in the local frame of coordinates in Binding-
Item::cvProjection. This data is not necessarily the same as
the position of the vertex after the module deformations
have been completed (Bindingltem::cvCurrent) because it
does not take into account any post-deformation weighting
or interpolation algorithnis.

The above-described examples assume that proxy model
402 is set up as a wrap-deforming object that drags vertices
of CG model 151. One skilled in the art will recognize,
however, that other configurations are possible. For
example, proxy polygonal meshes 402 can be placed inside
CG models 151 to work as supporting surfaces for deform-
ing the characters. Such an arrangement may be preferable
in some situations, for example to generate anatomically
precise deformations. For purposes of the description herein,
the term “wrap deformation™ is used regardless of the
placement of proxy 402 relative to CG model 151.
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Deformation Layering Schemes

Once a binding relationship between proxy 402 and CG
model 151 has been established, one can define a number of
layering schemes for deforming surfaces 152.

As described above, deformation modules 103 support
several different layering schemes, including parallel, blend-
ing, sequential and hierarchical. In one embodiment, these
deformation schemes are supported by the DDS 106 design
as follows.

Once a binding between an element of the proxy surface
or curve and binding item 503 in DDS 106 item has been
established, a determination is made as to how module’s 103
algorithmic deformation is applied to compute a new vertex
position. In one embodiment, proxy 402 binds to either C,
(initial vertex position), C; (current vertex position, also
known as pre-deformed position) or O (origin for an input
local frame of coordinates).

Referring now to FIGS. 10A to 10D, there are shown
examples of a binding item 503 in (a) parallel mode, (b)
blending mode, (c) sequential mode, and (d) hierarchical
mode. In FIGS. 10A and 10B, the new local frame of
coordinates binds to the initial vertex position C,. In FIG.
10C (sequential mode), the new local frame of coordinates
binds to the input current vertex position C,. In FIG. 10D
(hierarchical mode), the new local frame of coordinates
binds to O, the origin of the input local frame of coordinates.
Each mode will now be described in turn.

Parallel Binding mode: As depicted in FIG. 10A, the
original vertex position C, is bound to the proxy/surface
binding item 503, which may be, for example, a triangle in
the case of a Loop Subdivision. Module 103 predicts a new
position C, for C, based on the specific deformation algo-
rithm of module 103. The diagram to the right of the arrow
shows the result of the deformation: C, is still the original
vertex position, C', is the input current position, and C, is the
new position predicted by the deformation algorithmi of
module 103. However, C, is not the actual output current
position; C, is computed as the addition of the C, C', and C,
C, vectors, as shown in the Figure. Thus, in this mode,
deformations are added in vector space regardless of the
order in which they are applied. Furthermore, in one
embodiment module 103 has an extra weight W parameter
that controls the amount of deformation to be applied per
vertex, so that the final current vertex position is an inter-
polation between C, and C,, calculated as C,(1-W)+W C,.

Blending Binding mode: As depicted in FIG. 10B, the
original vertex position C, is bound to the proxy/surface
binding item 503. Module 103 predicts a new position for C,,
based on the specific deformation algorithni of module 103.
The diagram to the right of the arrow shows the result of the
deformation: C,, is still the original vertex position, C', is the
input current position, and C, is the new position predicted
by the deformation algorithnt of module 103. Again, C, is
not the actual output current position; C, is computed as an
interpolation of the input current position C'; and the new
predicted deformed position C,. Hence, the deformations of
module 103 in this mode are blended, or interpolated, with
previous deformations layered on top of the deformed
model. The weight W used to interpolate between C', and C,
is again a parameter of module 103.

Sequential Binding mode: As depicted in FIG. 10C, the
current vertex position C; is bound to the proxy/surface
binding item 503. Module 103 predicts a new position for C,;
based on the specific deformation algorithni of module 103.
The diagram to the right of the arrow shows the result of the
deformation: C,, is still the original vertex position, C', is the
input current position, and C, is the new position predicted
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by the deformation algorithnt of module 103. Again, C, is
not the actual output current position; C, is computed as an
interpolation of the input current position C'; and the new
predicted deformed position C,. The new deformed position
is based on the input C, and not on the original C, it was in
FIG. 10B. Accordingly the final deformation is layered on
top of the result from previous deformations. The deforma-
tions of each module are layered upon one another, each
module having a new offset of the current vertex position. As
before, a weight W in module 103 yields the final current
vertex position C, as the interpolation of C'; and C,.

Hierarchical Binding mode:: As depicted in FIG. 10C, the
origin of the local frame of coordinates O is bound to the
proxy/surface binding item 503. Module 103 predicts a new
position for C, based on the specific deformation algorithni
of module 103. This algorithm moves the old origin O to a
new location O' and then pivots the old OC', offset to its new
location C,. The deformation contribution of module 103
maintains the old OC, offset and translates and pivots the
location of that offset according to a new deformation
algorithm. Again, the presence of a weight W in module 103
results in interpolation between the old current position C';
and the newly predicted C,.

As will be clear to one skilled in the art, DDS 106, and in
particular the binding item 503 embodiment described
above, provides and can support additional layering defor-
mation schemes, for example based on the local frame of
coordinates by, b, b, or based on combinations of any of
them.

Similarly it will be understood that pipeline 100 can have
multiple modules 103 in various binding modes, in any order
and sequence. Such flexibility enormously enhances the
rigging possibilities for creating sophisticated CG character
rigs.

Module 103 Attributes

In one embodiment, each module 103 has its own set of
attributes, or parameters, that modify and control its behav-
ior. These attributes can include some that are specific to a
given type of deformation module 103, and some that are
more general. Each attribute has a name. Examples of
attributes include, without limitation:

Enabled: A Boolean attribute that enables/disables the
action of module 103. When disabled, module 103 works in
a pass-through mode, so that DDS 106 data is copied
directly from input to output.

DDS In: An input connection for the input Deformation
Data Stream 106 provided to module 103.

DDS Out: An output connection for the output Deforma-
tion Data Stream 106 resulted from module’s 103 deforma-
tion.

Binding mode: Each module 103 can bind to incoming
binding items 503 according to any of the four modes
described above: parallel, blending, sequential and hierar-
chical.

Weight: Controls how much of the total deformation of
module 103 is applied to the input DDS 106. When a
module’s 103 weight is O, it has no deformation effect. A
module 103 having a weight of 1 applies its deformation in
full, while a module 103 having a weight of 0.5 generates
output that represents a midpoint between a fully deformed
geometry and the original undeformed geometry. In one
embodiment, this weight controls the operation of module
103 as a whole, while a separate, per-binding site (binding-
Site.weight) weight controls weights by individual binding
site. Thus, if module 103 weight is denoted as W, and the
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weight associated with each binding site 1 is denoted as s,,
the deformation applied to the point associated with binding
site 1 is the product Wxs;.

Deformation Pipeline 100 Filtering and Masking

As described above, in one embodiment each binding
item 503 in DDS 106 carries with it a tag (Bindingltem::tag).
The tag controls, at the vertex level, how each module 103
affects binding items 503 in DDS 106. In one embodiment,
the following tags are available: UNKNOWN, UNBOUND,
PARALLEL, BLENDING, SEQUENTIAL, HIERARCHI-
CAL. One skilled in the art will recognize that other tags
may also be provided.

In one embodiment, by default a binding item 503 starts
in the UNKNOWN state; as the binding item 503 passes
through pipeline 100, each module 103 deforms binding
item 503 according to its own parameters and characteris-
tics. For instance, a module 103 in parallel binding mode
would modify UNKNOWN binding items 503 according to
the parallel binding techniques described above.

However if the tag of binding item 503 is either PAR-
ALLEL, BLENDING, SEQUENTIAL or HIERARCHICAL
then only modules 103 of the matching type modify binding
item 503. Thus, the tag acts as a filter on the deformations
that will be performed on binding item 503 as it passes
through pipeline 100.

The UNBOUND tag specifies that binding items 503 are
never deformed by modules 103 regardless of their binding
mode. This tag allows a user to exclude binding items 503
from deformation pipeline 100 downstream.

In one embodiment, there are filter modules 103 that
assign specific tags to bindingltems in DDS 106. These are
assigned by various algorithnis that do not break the inde-
pendence of Deformation Pipeline 100 from CG model 151.
An example of a filter module 103 is one that uses (x.y,z)
coordinates and bounding boxes to specify regions covered
by a given tag. Many other methods are possible.

Filter modules 103 can be placed anywhere in pipeline
100 in order to assign and modify tags of binding items 503
as they pass through as part of deformation pipeline 100.
Once a binding item 503 receives a tag from a filter module
103 along pipeline 100, it carries that tag downstream; hence
the behavior of all downstream modules 103 are affected by
the same tag until a new filter module 103 is reached that
may change the tag to another value.

Related very closely to filtering is the concept of “mask-
ing”. Masking is supported through masking modules 103
which are attached as accessory modules to a deformation
module 103. A masking module 103 assigns tags to bind-
ingltems in DDS 106, but these tags live only within
deformation module 103. Masking is a form of overriding
the tags that vertices carry with them in DDS 106.

Referring now to FIG. 11, there is shown an example of
DDS 106 item being passed through filter module 1101 and
deformation module 103 that is modified by accessory
masking module 1102. The binding items 503 get new tags
assigned at filter module 1101. However, as they arrive at
deformation module 103, a masking tag can override their
value. As the binding items 503 exit deformation module
103, they continue to carry the pre-mask tag value.

List of Modules

The following is a description of some examples of
modules 103 that can be implemented in deformation pipe-
line 100 according to one embodiment: Head Module 102.
Head module 102 converts geometry items 101 defined
outside deformation pipeline 100 (such as NURBS, meshes,
subdivision meshes, curves, points, and the like) into DDS
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106. Module 102 initializes cvOrig and cvCurrent to be
identical for all points. It also initializes binding items 503
to carry the origin of coordinates as its binding frame. Tail
Module 104. Tail module 104 is the last node in pipeline
100. It converts DDS 106 items to actual geometry items
105 (such as NURBS, meshes, subdivision meshes, curves,
points, and the like). In one embodiment, as described
above, data stream 106 does not include topological infor-
mation 351; such information travels by a parallel connec-
tion (Topology) from head module 102 to tail module 104.
Such topological information 351 describes, for example,
what type of geometry is represented by DDS 106, and also
includes information describing the basis set and other
properties.

CBinding or [LBinding Modules 103. These are proxy/
surface binding modules 103 that use polygonal meshes 402
as proxies. CBinding and [Binding modules 103 take a
polygonal mesh 402 and convert it internally into a subdi-
vision mesh 403 that acts as a surface binding for the
incoming data stream 106. As polygonal mesh 402 moves
during the animation phase, the binding domain drags bind-
ing sites along. For CBinding modules 103, the surface
binding is quad-based; for LBinding modules 103, the
surface binding is triangle-based.

In one embodiment, Cbinding modules 103 use the Cat-
mull-Clark algorithn1 to compute the surface binding while
Lbinding modules 103 use the Loop subdivision algorithni.

Referring now to FIG. 12A, there is shown an embodi-
ment of a Cbinding module 103 in which a single polygonal
proxy mesh 402 is used. During the first connection, a copy
of mesh 402 is cached in module 103 as a reference to the
exact pre-deformed position of mesh 402. In one embodi-
ment, binding items 503 of DDS 106 are bound dynamically
to the Catmull-Clark surface generated from this cached
mesh 402. As the input polygonal mesh 402 deforms under
animation curves or other rigs, its own Catmull-Clark sur-
face provides updated positions to the local frames of
coordinates, hence providing a driving force for the defor-
mation.

Referring now to FIG. 12B, there is shown an embodi-
ment of a Cbinding module 103 in which two polygonal
meshes 402A, 402B are connected to CBinding module 103.
Binding mesh 402A (also known as a reference mesh) is a
reference to a surface where binding items are bound.
Updating mesh 402B (also known as a life mesh) is the one
that is edited and that updates positions of local frames of
coordinates for the vertices. A user can deform both meshes
402A, 402B.

CurveBinding Module 103. CurveBinding modules 103
use a parametric curve as a binding domain. As with the
CBinding module 103 described above, CurveBinding mod-
ule 103 can be implemented either with a reference mesh
402A or without one.

Filter Module 103. In one embodiment, for each binding
item 503 in DDS 106, an integer tag (Bindingltem::tag)
travels with the point along pipeline 100. The effect of a
deformation module 103 on a vertex in DDS 106 can be
modified depending on the value of this tag. For example, if
the tag for a vertex is (UNBOUND), then no deformation
module 103 along pipeline 100 binds to it to deform it.

Mask Module 103. A mask module 103 is similar in some
respects to a filter module 103. It is also used to exclude
certain deformations from certain regions. In one embodi-
ment, mask module 103 connects directly to binding defor-
mation modules 103. It includes a masking of the binding
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domain, so that it can cancel the contributions of deforma-
tion module 103 to binding items 503 connected to certain
areas of the binding domain.

Weighting Module 103. A weighting module 103 con-
nects directly to the binding deformation module 103, and
manages the per-point (binding item 503) weighting to be
used during deformation. Weighting module 103 can there-
fore be used to fine-tune deformations for selected areas of
the character being animated. Weights can be assigned to
binding items 503 per ID or by geographical area. Weights
can also be attached directly to binding items 503 or
indirectly through the binding domain where points are
attached.

Relaxer Module 103. A relaxer module 103 allows a user
to add physical properties to polygonal mesh 403 (as in
CBinding) to make animation more realistic. For example, a
relaxer module 103 can be used to add or specify elasticity,
inertia, drag, and other properties to the deformation.
Relaxer module 103 can also be used to fix continuity
problems on deformed surfaces 152.

Other Modules 103. As will be apparent to one skilled in
the art, many other modules 103 can also be implemented
according to well-known techniques. Such modules 103
include, for example, objects of influence, particle sources
and sinks, and the like. Algorithnis for performing such
operations are well known in the art.

Weighting

In one embodiment, an overall sum of weights for defor-
mations applied to a single input vertex is 1. In one embodi-
ment, the system of the present invention performs a nor-
malization operation to ensure that the sum of the weights is
1, so as to avoid spurious artifacts in the geometry that can
result if the sum is some other value.

In one embodiment, the system of the present invention
performs such normalization while maintaining serialization
of operations. Per-module weights, W, are specified in
relative terms; they represent the amount of deformation to
be applied by a module 103 with reference to the input at that
module 103, and without reference to overall pipeline 100 or
to any other modules 103. Thus, for example, a pipeline 100
might have seven modules 103, all of which have weights of
0.5. Since each module 103 applies its weight only with
reference to its particular input stream 106 and its own
deformation operations, such values are consistent and do
not lead to spurious artifacts. Each module 103 applies half
ofits deformation and blends with half of the incoming data
stream 106.

At the beginning of pipeline 100, binding items are given
a weight of 1. This weight is the total amount of deformation
that each vertex can experience. As data stream 106 passes
from one module 103 to another, each module’s 103 defor-
mation weight is subtracted from the weighting of binding
item 503. For example, if first deformation module 103 has
a weight of 1.0, then upon output, binding item 503 has a
weight of 0.0 and cannot be affected by any further defor-
mations. On the other hand, if first deformation module 103
has a weight of 0.25, then upon output, binding item 503 has
a weight of 0.75 and further deformations on the point are
still possible.

Referring now to FIG. 13, there is shown an example of
weight application and determination according to one
embodiment. CBinding module 103 is shown with its
attached polygonal mesh 402 and a weights module 1201.
CBinding module 103 has a local weight of W. On input,
binding item 503 of DDS 106 has a weight of w,; on output,
a weight of w, remains. CBinding module 103 performs a
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deformation on the input control vertex with a local weight
of Ww,,, where w, is the per-vertex weighting provided by
weights module 1201. Thus, if module 103 is in parallel
binding mode and the total point weight is W w,=0.75, then
CBinding module 103 would perform an interpolation
between the fully deformed position C, and the original
position C, with a weighting of 0.75 and 0.25, respectively.

The deformation pipeline of the present invention pro-
vides a number of advantages over prior art techniques.
These include, for example:

Providing a flexible, advanced and extensible deformation
mechanism using as few nodes as possible.

Providing a deformation pipeline independent of the
specifics of the CG model details, thus allowing users to
create character rigs that are more portable among charac-
ters.

Providing a deformation pipeline which by design tolerate
editing changes to the CG model(s) being deformed without
invalidating the character rig.

Providing a generic deformation pipeline capable of pro-
cessing batches of characters that are morphologically simi-
lar.

Providing a deformation architecture that can easily be
implemented in hardware, particularly since each node is
independent and serialized.

Providing a simple abstract interface for deformation
nodes that facilitates easy extension to the pipeline, yet
allows sufficient generality to carry unforeseen types of
user-defined data.

Providing support for per-vertex attributes, filtering,
weighting and masking.

The foregoing description of the embodiments of the
invention has been presented for the purposes of illustration
and description. It is not intended to be exhaustive or to limit
the invention to the precise forms disclosed. Persons skilled
in the relevant art can appreciate that many modifications
and variations are possible in light of the above teaching.
Persons skilled in the art will recognize various equivalent
combinations and substitutions for various components
shown in the figures. It is therefore intended that the scope
of the invention be limited not by this detailed description,
but rather by the claims appended hereto.

Reference in the specification to “one embodiment” or
“an embodiment” means that a particular feature, structure,
or characteristic described in connection with the embodi-
ment is included in at least one embodiment of the invention.
The appearances of the phrase “in one embodiment” in
various places in the specification are not necessarily all
referring to the same embodiment.

Some portions of the detailed description are presented in
terms of algorithms and symbolic representations of opera-
tions on data bits within a computer memory. These algo-
rithmic descriptions and representations are the means used
by those skilled in the data processing arts to most effec-
tively convey the substance of their work to others skilled in
the art. An algorithm is here, and generally, conceived to be
a self-consistent sequence of steps leading to a desired
result. The steps are those requiring physical manipulations
of physical quantities. Usually, though not necessarily, these
quantities take the form of electrical or magnetic signals
capable of being stored, transferred, combined, compared,
and otherwise manipulated. It has proven convenient at
times, principally for reasons of common usage, to refer to
these signals as bits, values, elements, symbols, characters,
terms, numbers, or the like.

It should be borne in mind, however, that all of these and
similar terms are to be associated with the appropriate
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physical quantities and are merely convenient labels applied
to these quantities. Unless specifically stated otherwise as
apparent from the following discussion, it is appreciated that
throughout the description, discussions utilizing terms such
as “processing” or “computing” or “calculating” or “deter-
mining” or “displaying” or the like, refer to the action and
processes of a computer system, or similar electronic com-
puting device, that manipulates and transforms data repre-
sented as physical (electronic) quantities within the com-
puter system’s registers and memories into other data
similarly represented as physical quantities within the com-
puter system memories or registers or other such informa-
tion storage, transmission or display devices.

The present invention can be implemented as a stand-
alone software application for installation and execution on
a general purpose computer or workstation. Alternatively, it
can be implemented as a plug-in for an existing software
application.

The present invention also relates to an apparatus for
performing the operations herein. This apparatus may be
specially constructed for the required purposes, or it may
comprise a general-purpose computer selectively activated
or reconfigured by a computer program stored in the com-
puter. Such a computer program may be stored in a computer
readable storage medium, such as, but is not limited to, any
type of disk including floppy disks, optical disks, CD-
ROMs, and magnetic-optical disks, read-only memories
(ROMs), random access memories (RAMs), EPROM:s,
EEPROMs, magnetic or optical cards, or any type of media
suitable for storing electronic instructions, and each coupled
to a computer system bus. The present invention can also be
implemented in hardware, for example in a specialized
graphics card for performing computer animation opera-
tions.

The algorithnis and modules presented herein are not
inherently related to any particular computer or other appa-
ratus. Various general-purpose systems may be used with
programs in accordance with the teachings herein, or it may
prove convenient to construct more specialized apparatuses
to perform the required method steps. The required structure
for a variety of these systems will appear from the descrip-
tion below. In addition, the present invention is not
described with reference to any particular programming
language. It will be appreciated that a variety of program-
ming languages may be used to implement the teachings of
the invention as described herein. Furthermore, as will be
apparent to one of ordinary skill in the relevant art, the
modules, features, attributes, methodologies, and other
aspects of the invention can be implemented as software,
hardware, firmware or any combination of the three. Of
course, wherever a component of the present invention is
implemented as software, the component can be imple-
mented as a standalone program, as part of a larger program,
as a plurality of separate programs, as a statically or gram,
as a plurality of separate programs, as a statically or dynami-
cally linked library, as a kernel loadable module, as a device
driver, and/or in every and any other way known now or in
the future to those of skill in the art of computer program-
ming. Additionally, the present invention is in no way
limited to implementation in any specific operating system
or environment.

What is claimed is:

1. An animation deformation pipeline embodied in a
computer-readable storage medium, comprising:

a head node embodied in a computer-readable medium,

the head node configured to convert a geometric rep-
resentation of an object into a data stream;
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a plurality of deformation nodes embodied in a computer-
readable medium, each deformation node configured to
receive the data stream from a node, and for applying
a deformation to the data stream;

a tail node embodied in a computer-readable medium, the
tail node configured to convert the deformed data
stream into a geometric representation of a deformed
object wherein topology information describing the
topology makeup of the geometry encoded in the data
stream is passed through the plurality of deformation
nodes separate from the data stream without altering
the topology information.

2. The animation deformation pipeline of claim 1,
wherein at least a subset of the deformation nodes apply
deformations in response to manipulation of a polygonal
proxy model.

3. The animation deformation pipeline of claim 1,
wherein each deformation node passes the data stream to a
succeeding node.

4. The animation deformation pipeline of claim 1,
wherein at least a subset of the deformation nodes apply
deformations using a sequential binding mode.

5. The animation deformation pipeline of claim 4,
wherein, at least a subset of the deformation nodes apply
deformations to the result of a previous deformation node.

6. The animation deformation pipeline of claim 4,
wherein each deformation node receives, within the data
stream, a representation of 1 point, deforms the point, and
passes, to a succeeding node, a representation of the
deformed point.

7. The animation defonnation pipeline of claim 1, wherein
at least a subset of the deformation nodes apply deforma-
tions using a parallel binding mode.

8. The animation deformation pipeline of claim 7,
wherein at least a subset of the deformation nodes apply
deformations by combining influences of at least two
polygonal proxy models.

9. The animation deformation pipeline of claim 7,
wherein each deformation node receives, within the data
stream, a representation of a point, deforms the point, and
passes, to a succeeding node, a representation of the unde-
formed point.

10. The animation deformation pipeline of claim 7,
wherein each deformation node receives, within the data
stream, a representation of a point, deforms the point, and
passes, to a succeeding nod; a representation of the
deformed point and a representation of the undeformed
point.

11. The animation deformation pipeline of claim 1,
wherein at least a subset of the defonnation nodes apply
deformations using a blend binding mode.

12. The animation deformation pipeline of claim 11,
wherein at least a subset of the deformation nodes generate
output that interpolates a current deformation with output of
at least one other deformation node.

13. The animation deformation pipeline of claim 1,
wherein at least a subset of the deformation nodes apply
deformations using a hierarchical binding mode.

14. The animation deformation pipeline of claim 13,
wherein at least a subset of the deformation nodes apply
deformations to a local origin point of an input binding site.

15. The animation deformation pipeline of claim 1,
wherein at least a subset of the deformation nodes are
associated with a user-specifiable weight parameter that
controls the relative amount of deformation applied by the
node.
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16. The animation deformation pipeline of claim 15,
wherein each deformation node associated with a user-
specifiable weight generates output representing a weighted
combination of the input to the deformation node and the
result of the deformation applied by the node.
17. The animation deformation pipeline of claim 15,
wherein the weights are normalized over the entire pipeline.
18. The animation deformation pipeline of claim 15,
wherein the weights are not normalized.
19. The animation deformation pipeline of claim 1,
wherein each deformation node applies its deformation by:
determining a binding site for at least one control vertex
of the object; transforming the binding site;

propagating the transformation of the binding site to the
control vertex of the object, to establish a new location
for the control vertex; and deforming the object accord-
ing to the new location of the control vertex.

20. The animation deformation pipeline of claim 17,
wherein the binding sites are locations in a subdivision
surface.

21. The animation deformation pipeline of claim 19,
wherein the binding sites are components of a polygonal
proxy model, and wherein propagating the transformation
comprises deforming a subdivision surface, wherein to sub-
division surface passes smooth deformations to the control
vertices of the object.

22. The animation deformation pipeline of claim 1,
wherein each deformation node generates data stream output
for another node, the data stream output comprising a
representation of to deformed object.

23. The animation deformation pipeline of claim 1,
wherein the data stream comprises a plurality of binding
items to be deformed by deformation nodes.

24. The animation deformation pipeline of claim 23,
wherein the binding items comprise tags specifying binding
modes.

25. The animation deformation pipeline of claim 24,
wherein each deformation node has a binding mode, and
wherein each deformation node applies deformations on
binding items having a tag specifying a matching binding
mode.

26. The animation deformation pipeline of claim 24,
further comprising at least one filter node for modifying
tags.

27. The animation deformation pipeline of claim 24,
wherein at least one binding item comprises a tag specifying
that no deformations are to be applied, and wherein the
deformation nodes allow the binding item having the tag to
pan without deformation.

28. The animation deformation pipeline of claim 24,
further comprising at least one masking node for modifying
tags.

29. The animation deformation pipeline of claim 28,
wherein the masking node modifies a tag to specify that a
binding item be excluded from deformation by a particular
deformation node.

30. The animation deformation pipeline of claim 1,
wherein each node comprises a graphics hardware compo-
nent.

31. The animation-deformation pipeline of claim 1,
wherein: the object comprises a plurality of surfaces;

the data stream comprises at least one data block for each

surface of the object;

and each deformation node applies a defonnation by

modifying at least one data block associated with the
object surface being deformed.
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32. The animation deformation pipeline of claim 31,
wherein each surface is associated with a plurality of control
vertices, and wherein each data block

comprises a binding item entry for each control vertex of

the surface associated with the data block.

33. The animation deformation pipeline of claim 1,
wherein each deformation node comprises a user-specifiable
attribute for enabling and disabling the node.

34. The animation deformation pipeline of claim 1,
wherein each deformation node comprises a user-specifiable
attribute indicating a blending mode.

35. The animation deformation pipeline of claim 1,
wherein each deformation node comprises a user-specifiable
attribute indicating a weighting factor.

36. A method for deforming a computer-generated object
using a deformation pipeline, comprising:

converting a geometric representation of an object into a

data steam;

for each of a plurality of deformation nodes, receiving the

data stream and applying a deformation to the data
stream;

passing topology information describing topology

makeup of the geometry encoded in the data stream
through the plurality of deformation nodes separate
from the data stream without altering the topology
information;

converting the deformed data stream into a geometric

representation of a deformed object; and

displaying the geometric representation of the deformed

object.

37. The method of claim 36, wherein for at least a subset
of the deformation nodes, applying a deformation comprises
applying the deformation in response to manipulation of a
polygonal proxy model.

38. The method of claim 36, further comprising, for each
of the deformation nodes, passing the data stream to a
succeeding node.

39. The method of claim 36, wherein for at least a subset
of the deformation nodes, applying a deformation comprises
applying the deformation using a sequential binding mode.

40. The method of claim 39, wherein for at least a subset
of the defonnation nodes, applying a deformation comprises
applying the deformation to the result of a previous defor-
mation node.

41. The method of claim 39, further comprising, for each
of the deformation nodes, receiving within the data stream
a representation of a point, deforming the point, and passing,
to a succeeding node, a representation of the deformed point.

42. The method of claim 36, wherein for at least a subset
of the deformation nodes, applying deformations comprises
using a parallel binding mode.

43. The method of claim 42, wherein for at least a subset
of the deformation nodes, applying a deformation comprises
combining influences of at least two polygonal proxy mod-
els.

44. The method of claim 42, wherein each deformation
node receives, within the data stream, a representation of a
point, deforms the point, and passes, to a succeeding node,
a representation of the undeformed point.

45. The method of claim 42, further comprising, for each
of the deformation nodes, receiving, within the data stream,
a representation of a point, deforming the point, and passing,
to a succeeding node, a representation of the deformed point
and a representation of the undeformed point.

46. The method of claim 36, wherein for at least a subset
of the deformation nodes, applying a deformation comprises
applying deformations using a blend binding mode.
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47. The method of claim 46, further comprising, for at
least a subset of the deformation nodes interpolating a
current deformation with output of at least one other defor-
mation node.

48. The method of claim 36, wherein for at least a subset
of the deformation nodes, applying a deformation comprises
applying deformations using a hierarchical binding mode.

49. The method of claim 48, wherein for at least a subset
of the deformation nodes, applying a deformation comprises
applying deformations to a local origin point of an input
binding site.

50. The method of claim 36, further comprising, for at
least a subset of the deformation nodes, receiving a user-
specifiable weight parameter controlling the relative amount
of deformation applied by the node.

51. The method of claim 50, further comprising, for at
least a subset of the deformation nodes, generating output
representing a weighted combination of the input to the
deformation node and the result of the deformation applied
by the node.

52. The method of claim 50, further comprising normal-
izing the weights over the entire pipeline.

53. The method of claim 36, wherein, fur at least a subset
of the deformation nodes, applying a deformation node
comprises:

determining a binding site for at least one control vertex

of the object;

transforming the binding site;

propagating the transformation of the binding site to the

control vertex of the object, to establish a new location
for the control vertex; and deforming the object accord-
ing to the new location of the control vertex.

54. The method of claim 53, wherein the binding sites are
locations in a subdivision surface.

55. The method of claim 53, wherein the binding sites are
components of a polygonal proxy model, and wherein
propagating the transformation comprises deforming a sub-
division surface, wherein the subdivision surface passes
smooth deformations to the control vertices of the object.

56. The method of claim 36, further comprising, for each
deformation node, generating data stream output for another
node, the data stream output comprising a representation of
the deformed object.

57. The method of claim 36, wherein the data stream
comprises a plurality of binding items to be deformed by
deformation nodes.

58. The method of claim 57, wherein the binding items
comprise tags specifying binding modes.

59. The method of claim 58, wherein each deformation
node has a binding mode, and wherein, for each deformation
node, applying a deformation comprises applying a defor-
mation on binding items having a tag specifying a matching
binding mode.

60. The method of claim 36, wherein:

the object comprises a plurality of surfaces;

the data stream comprises at least one data block for each

surface of the object;

and wherein, for each deformation node, applying a

deformation comprises modifying at least one data
block associated with the object surface being
deformed.

61. The method of claim 60, wherein each surface is
associated with a plurality of control vertices, and wherein
each data block comprises a binding item entry for each
control vertex of the surface associated with the data block.
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62. The meted of claim 36, further comprising, for each
deformation node, receiving a user-specifiable attribute for
enabling and disabling the node.

63. The method of claim 36, further comprising, further
each deformation node, receiving a user-specifiable attribute
indicating a blending mode.

64. The method of claim 36, further comprising, for each
deformation node, receiving a user-specifiable attribute indi-
cating a weighting factor.

65. A computer program product for defaming a com-
puter-generated object using a deformation pipeline, com-
prising:

a computer-readable medium; and

computer program code, encoded on the medium, for:

converting a geometric representation of an object into a

data stream;

for each of a plurality of deformation nodes, receiving the

data stream and applying a deformation to the data
stream;

passing topology information describing the topology

makeup of the geometry encoded in the data stream
through the plurality of deformation nodes separate
from the data stream without altering the topology
information; and

converting the deformed data stream into a geometric

representation of a deformed object.

66. The computer program product of claim 65, wherein
for at least a subset of the deformation nodes, the computer
program code for applying a deformation comprises com-
puter program code for applying the deformation in response
to manipulation of a polygonal proxy model.

67. The computer program product of claim 65, further
comprising computer program code for, for each of the
deformation nodes, passing the data stream to a succeeding
node.

68. The computer program product of claim 65, wherein
for at least a subset of the deformation nodes, the computer
program code for applying a deformation comprises com-
puter program code for applying the deformation using a
sequential binding mode.

69. The computer program product of claim 68, wherein
for at least a subset of the deformation nodes, the computer
program code for applying a deformation comprises com-
puter program code for applying the deformation to the
result of a previous deformation node.

70. The computer program product of claim 68, further
comprising, for each of the deformation nodes, computer
program code for receiving within the data stream a repre-
sentation of a point, deforming the point, and passing, to a
succeeding node, a representation of the deformed point.

71. The computer program product of claim 65, wherein
for at least a subset of the deformation nodes, the computer
program code for applying deformations uses a parallel
binding mode.

72. The computer program product of claim 71, wherein
for at least a subset of the deformation nodes, the computer
program code for applying a deformation comprises com-
puter program code for combining influences of at least two
polygonal proxy models.

73. The computer program product of claim 71, wherein
each deformation node receives, within the data stream, a
representation of a point, deforms the point, and passes, to
a succeeding node, a representation of the undeformed point.

74. The computer program product of claim 71, further
comprising, for each of the deformation nodes, computer
program code for receiving, within the data stream, a
representation of a point, deforming the point, and passing,
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to a succeeding node, a representation of the deformed point
and a representation of the undeformed point.
75. The computer program product of claim 65, wherein
for at least a subset of the deformation nodes, the computer
program code for applying a deformation comprises com-
puter program code for applying deformations using a blend
binding mode.
76. The computer program product of claim 75, further
comprising computer program code for, for at least a subset
of the deformation nodes interpolating a current deformation
with output of at least one other deformation node.
77. The computer program product of claim 65, wherein
for at least a subset of the deformation nodes, the computer
program code for applying a deformation comprises com-
puter program code for applying deformations using a
hierarchical binding mode.
78. The computer program product of claim 77, wherein
for at least a subset of the deformation nodes, the computer
program code for applying a deformation comprises com-
puter program code for applying deformations to a local
origin point of an input binding site.
79. The computer program product of claim 65, further
comprising, for at least a subset of the deformation nodes,
computer program code for receiving a user-specifiable
weight parameter controlling the relative amount of defor-
mation applied by the node.
80. The computer program product of claim 79, further
comprising, for at least a subset of the deformation nodes,
computer program code for generating output representing a
weighted combination of the input to the deformation node
and the result of the deformation applied by the node.
81. The computer program product of claim 79, further
comprising computer program code for normalizing the
weights over the entire pipeline.
82. The computer program product of claim 65, wherein,
for at least a subset of the deformation nodes, the computer
program code for applying a deformation node comprises
computer program code for:
determining a binding site for at least one control vertex
of the object; transforming the binding site;

propagating the transformation of the binding site to the
control vertex of the object, to establish a new location
for the control vertex; and deforming the object accord-
ing to the new location of the control vertex.

83. The computer program product of claim 82, wherein
the binding sites are locations in a subdivision surface.

84. The computer program product of claim 82, wherein
the binding sites are components of a polygonal proxy
model, and wherein the computer program code for propa-
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gating the transformation comprises computer program code
for deforming a subdivision surface, wherein the subdivision
surface passes smooth deformations to the control vertices
of the object.

85. The computer program product of claim 65, further
comprising, for each deformation node, computer program
code for generating data stream output for another node, the
data stream output comprising a representation of the
deformed object.

86. The computer program product of claim 65, wherein
the data stream comprises a plurality of binding items to be
deformed by deformation nodes.

87. The computer program product of claim 86, wherein
the binding items comprise tags specifying binding modes.

88. The computer program product of claim 87, wherein
each deformation node has a binding mode, and wherein, for
each deformation node, the computer program code for
applying a deformation comprises computer pro gram code
for applying a deformation on binding items having a tag
specifying a matching binding mode.

89. The computer program product of claim 65, wherein:
the object comprises a plurality of surfaces;

the data stream comprises at least one data block for each

surface of the object;

and wherein, for each deformation node, the computer

program code for applying a deformation comprises
computer program code for modifying at least one data
block associated with the object surface being
deformed.

90. The computer program product of claim 89, wherein
each surface is associated with a plurality of control vertices,
and wherein each data block comprises a binding item entry
for each control vertex of the surface associated with the
data block.

91. The computer program product of claim 65, further
comprising, for each deformation node, computer program
code for receiving, a user-specifiable attribute for enabling
and disabling the node.

92. The computer program product of claim 65, further
comprising, for each deformation node, computer program
code for receiving a user-specifiable attribute indicating a
blending mode.

93. The computer program product of claim 65, further
comprising, for each deformation node, computer program
code for receiving a user-specifiable attribute indicating a
weighting factor.



